×

On blowing up extremal Kähler manifolds. (English) Zbl 1259.58002

This paper studies the following problem: suppose \((M,\omega)\) is a compact Kähler manifold with an extremal Kähler metric, and \(p\in M\). When does the blowup \(\tilde{M}\) of \(M\) at \(p\) admit an extremal metric in all Kähler classes which makes the exceptional divisor sufficiently small?
This is a challenging problem, because in general the existence of extremal Kähler metrics in a (rational) Kähler class is conjectured to be equivalent to an algebro-geometric notion of stability of the polarized manifold (known as “relative K-polystability”). The first results concerning this question are due to C. Arezzo and F. Pacard [Acta Math. 196, No. 2, 179–228 (2006; Zbl 1123.53036); Ann. Math. (2) 170, No. 2, 685–738 (2009; Zbl 1202.53069)] and C. Arezzo, F. Pacard and M. Singer [Duke Math. J. 157, No. 1, 1–51 (2011; Zbl 1221.32008)], who proved that indeed \(\tilde{M}\) admits such extremal metrics, under certain additional hypotheses. The first of theses papers also completely treated the case when \(M\) has no nonzero holomorphic vector fields, so the author assumes that this is not the case for \(M\).
The paper under review removes most of the additional hypotheses, and in fact settles the above-mentioned conjecture in the case when \((M,\omega)\) is Kähler-Einstein. This requires a refining of the gluing techniques of the above-mentioned papers, a solid understanding of the deformation problem for relatively stable points in geometric invariant theory, and some technical algebro-geometric calculations of Futaki invariants on blowups. Overall, this is a groundbreaking paper, where analysis, differential geometry and algebraic geometry come together beautifully. We expect that a further improvement of the techniques in this paper will lead to a complete solution to the existence problem of extremal Kähler metrics on blowups of extremal manifolds.

MSC:

58E11 Critical metrics
35J30 Higher-order elliptic equations

References:

[1] C. Arezzo and F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler manifolds , Acta Math. 196 (2006), 179-228. · Zbl 1123.53036 · doi:10.1007/s11511-006-0004-6
[2] C. Arezzo and F. Pacard, Blowing up Kähler manifolds with constant scalar curvature, II , Ann. of Math. (2) 170 (2009), 685-738. · Zbl 1202.53069 · doi:10.4007/annals.2009.170.685
[3] C. Arezzo and F. Pacard, On the Kähler classes of constant scalar curvature metrics on blowups , preprint, [math.DG] 0706.1838v1 · Zbl 1035.53081
[4] C. Arezzo, F. Pacard, and M. A. Singer, Extremal metrics on blowups , Duke Math. J. 157 (2011), 1-51. · Zbl 1221.32008 · doi:10.1215/00127094-2011-001
[5] S. Bochner and W. T. Martin, Several complex variables , Princeton Math. Ser. 10 , Princeton Univ. Press, Princeton, 1948. · Zbl 0041.05205
[6] E. Calabi, “Extremal Kähler metrics” in Seminar on Differential Geometry , Ann. of Math. Stud. 102 , Princeton Univ. Press, Princeton, 1982, 259-290. · Zbl 0487.53057
[7] E. Calabi, “Extremal Kähler metrics, II” in Differential Geometric and Complex Analysis , Springer, Berlin, 1985, 95-114. · Zbl 0574.58006 · doi:10.1007/978-3-642-69828-6_8
[8] A. Della Vedova, CM-stability of blow-ups and canonical metrics , preprint, [math.AG] 0810.5584v1
[9] S. K. Donaldson, Scalar curvature and stability of toric varieties , J. Differential Geom. 62 (2002), 289-349. · Zbl 1074.53059
[10] S. K. Donaldson, Lower bounds on the Calabi functional , J. Differential Geom. 70 (2005), 453-472. · Zbl 1149.53042
[11] S. K. Donaldson, Constant scalar curvature metrics on toric surfaces , Geom. Funct. Anal. 19 (2009), 83-136. · Zbl 1177.53067 · doi:10.1007/s00039-009-0714-y
[12] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds , Oxford Math. Monogr., Oxford Univ. Press, New York, 1990. · Zbl 0820.57002
[13] Y.-J. Hong, Gauge-fixing constant scalar curvature equations on ruled manifolds and the Futaki invariants , J. Differential Geom. 60 (2002), 389-453. · Zbl 1049.53050
[14] Y.-J. Hong, Stability and existence of critical Kähler metrics on ruled manifolds , J. Math. Soc. Japan 60 (2008), 265-290. · Zbl 1180.53039 · doi:10.2969/jmsj/06010265
[15] G. Kempf and L. Ness, “The length of vectors in representation spaces” in Algebraic Geometry (Copenhagen, 1978) , Lecture Notes in Math. 732 , Springer, Berlin, 1979, 233-243. · Zbl 0407.22012
[16] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry , Math. Notes 31 , Princeton Univ. Press, Princeton, 1984. · Zbl 0553.14020
[17] C. LeBrun, Counter-examples to the generalized positive action conjecture , Comm. Math. Phys. 118 (1988), 591-596. · Zbl 0659.53050 · doi:10.1007/BF01221110
[18] C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory , Geom. Func. Anal. 4 (1994), 298-336. · Zbl 0801.53050 · doi:10.1007/BF01896244
[19] R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1 (1985), 409-447. · Zbl 0615.58048
[20] T. Mabuchi, K-stability of constant scalar curvature polarization , preprint, [math.DG] 0812.4093v2
[21] R. Mazzeo, Elliptic theory of edge operators, I , Comm. Partial Differential Equations 16 (1991), 1615-1664. · Zbl 0745.58045 · doi:10.1080/03605309108820815
[22] R. Melrose, The Atiyah-Patodi-Singer Index Theorem , Res. Notes in Math. 4 , AK Peters, Wellesley, Mass., 1993. · Zbl 0796.58050
[23] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory , 3rd ed., Ergeb. Math. Grenzgeb. (2) 34 , Springer, Berlin, 1994. · Zbl 0797.14004
[24] F. Pacard and T. Riviére, Linear and Nonlinear Aspects of Vortices: The Ginzburg-Landau Model , Birkhäuser, Boston, 2000. · Zbl 0948.35003
[25] D. H. Phong and J. Sturm, “Lectures on stability and constant scalar curvature” in Handbook of Geometric Analysis, No. 3 , Adv. Lect. Math. (ALM) 14 , Int. Press, Somerville, Mass., 2010. · Zbl 1220.53087
[26] S. R. Simanca, Kähler metrics of constant scalar curvature on bundles over C P n - 1 , Math. Ann. 291 (1991), 239-246. · Zbl 0725.53066 · doi:10.1007/BF01445203
[27] J. Stoppa, K-stability of constant scalar curvature Kähler manifolds , Adv. Math. 221 (2009), 1397-1408. · Zbl 1181.53060 · doi:10.1016/j.aim.2009.02.013
[28] J. Stoppa, Unstable blowups , J. Algebraic Geom. 19 (2010), 1-17. · Zbl 1198.14046 · doi:10.1090/S1056-3911-08-00503-1
[29] J. Stoppa and G. Székelyhidi, Relative K-stability of extremal metrics , J. Eur. Math. Soc. 13 (2011), 899-909. · Zbl 1230.53069 · doi:10.4171/JEMS/270
[30] G. Székelyhidi, Extremal metrics and K-stability , Bull. London Math. Soc. 39 (2007), 76-84. · Zbl 1111.53057 · doi:10.1112/blms/bdl015
[31] G. Székelyhidi, Extremal metrics and K-Stability , Ph.D. thesis, Imperial College London, [math.DG] · Zbl 1111.53057 · doi:10.1112/blms/bdl015
[32] R. P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties , Surv. Differ. Geom. 10 (2006), 221-273. · Zbl 1132.14043
[33] G. Tian, Kähler-Einstein metrics with positive scalar curvature , Invent. Math. 137 (1997), 1-37. · Zbl 0948.35003 · doi:10.1007/s002220050176
[34] S.-T. Yau, Open problems in geometry , Proc. Symposia Pure Math. 54 (1993), 1-28. · Zbl 0801.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.