×

Existence and regularity for prescribed Lorentzian mean curvature hypersurfaces, and the Born-Infeld model. (English) Zbl 1539.35024

In this article, the authors show existence and regularity for prescribed Lorentzian mean curvature hypersurfaces and the Born-Infeld model given by \[ \begin{cases} \begin{aligned} -\operatorname{div}\left(\frac{Du}{\sqrt{1-|Du|^{2}}}\right) =\rho \quad & \text{on } \Omega \subset \mathbb{R}^{m},\\ u=\phi \quad & \text{ on } \partial\Omega, \end{aligned} \end{cases} \] where \(\phi \in C(\partial \Omega)\), and \(D\) and \(|\cdot|\) are the connection (gradient) and norm in \(\mathbb{R}^{N}\). Moreover, the reader will be able to review known results in a bounded domain and in \(\mathbb{R}^{N}\) on this topic and the contributions of the authors in both cases.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
35J62 Quasilinear elliptic equations
35R06 PDEs with measure
49J40 Variational inequalities
53B30 Local differential geometry of Lorentz metrics, indefinite metrics

References:

[1] Adams, RA; Fournier, JJF, Sobolev spaces. Pure and Applied Mathematics (Amsterdam) (2003), Amsterdam: Elsevier/Academic Press, Amsterdam
[2] Akamine, S.; Umehara, M.; Yamada, K., Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space, Proc. Japan Acad. Ser. A Math. Sci., 95, 9, 97-102 (2019) · Zbl 1441.53005 · doi:10.3792/pjaa.95.97
[3] Alías, LJ; Mastrolia, P.; Rigoli, M., Maximum principles and geometric applications. Springer Monographs in Mathematics. (2016), Cham: Springer, Cham · Zbl 1346.58001 · doi:10.1007/978-3-319-24337-5
[4] Audounet, J.; Bancel, D., Sets with spatial boundary and existence of submanifolds with prescribed mean extrinsic curvature of a Lorentzian manifold, J. Math. Pures Appl. (9), 60, 3, 267-283 (1981) · Zbl 0474.53048
[5] Bartnik, R., Regularity of variational maximal surfaces, Acta Math., 161, 3-4, 145-181 (1988) · Zbl 0667.53049 · doi:10.1007/BF02392297
[6] Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Comm. Math. Phys. 87(1), 131-152 (1982/83) · Zbl 0512.53055
[7] Bergh, J.; Löfström, J., Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften (1976), Berlin-New York: Springer-Verlag, Berlin-New York · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[8] Białynicki-Birula, I.; Jancewicz, B.; Lukierski, J., Nonlinear electrodynamics: Variations on a theme by Born and Infeld, Quantum Theory of Particles and Fields, special volume in honor of Jan Łopuszanski, 31-48 (1983), Singapore: World Scientific, Singapore
[9] Boillat, G., Nonlinear electrodynamics: Lagrangians and equations of motion, J. Math. Phys., 11, 941-951 (1970) · doi:10.1063/1.1665231
[10] Bonheure, D., Iacopetti, A.: A sharp gradient estimate and \(W^{2,q}\) regularity for the prescribed mean curvature equation in Lorentz-Minkovski space. Available at arXiv:2101.08594 [math.AP] (2021)
[11] Bonheure, D.; Colasuonno, F.; Fóldes, J., On the Born-Infeld equation for electrostatic fields with a superposition of point charges, Ann. Mat. Pura Appl. (4), 198, 3, 749-772 (2019) · Zbl 1420.35395 · doi:10.1007/s10231-018-0796-y
[12] Bonheure, D.; d’Avenia, P.; Pomponio, A., On the electrostatic Born-Infeld equation with extended charges, Comm. Math. Phys., 346, 3, 877-906 (2016) · Zbl 1365.35170 · doi:10.1007/s00220-016-2586-y
[13] Bonheure, D.; d’Avenia, P.; Pomponio, A.; Reichel, W., Equilibrium measures and equilibrium potentials in the Born-Infeld model, J. Math. Pures Appl., 139, 9, 35-62 (2020) · Zbl 1440.35184 · doi:10.1016/j.matpur.2020.05.001
[14] Bonheure, D.; Iacopetti, A., On the regularity of the minimizer of the electrostatic Born-Infeld energy, Arch. Ration. Mech. Anal., 232, 697-725 (2019) · Zbl 1411.49020 · doi:10.1007/s00205-018-1331-4
[15] Born, M., Modified Field Equations with a Finite Radius of the Electron, Nature, 132, 282 (1933) · Zbl 0007.23402 · doi:10.1038/132282a0
[16] Born, M.; Infeld, L., Foundations of the new field theory, Nature, 132, 1004 (1933) · Zbl 0008.18405 · doi:10.1038/1321004b0
[17] Born, M.; Infeld, L., Foundations of the new field theory, Proc. Roy. Soc. London Ser. A, 144, 425-451 (1934) · Zbl 0008.42203 · doi:10.1098/rspa.1934.0059
[18] Brezis, H., Functional analysis. Sobolev spaces and partial differential equations. Universitext (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[19] Calabi, E., Examples of Bernstein problems for some non-linear equations (1968), Berkeley: AMS Symposium on Global Analysis, Berkeley
[20] Carley, H.; Kiessling, MK-H, Constructing graphs over \(\mathbb{R}^n\) with small prescribed mean-curvature, Math. Phys. Anal. Geom., 18, 1, 11 (2015) · Zbl 1338.35168 · doi:10.1007/s11040-015-9177-6
[21] Cheng, S-Y; Yau, S-T, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104, 407-419 (1976) · Zbl 0352.53021 · doi:10.2307/1970963
[22] Ecker, K., Area maximizing hypersurfaces in Minkowski space having an isolated singularity, Manuscripta Math., 56, 4, 375-397 (1986) · Zbl 0594.58023 · doi:10.1007/BF01168501
[23] Estudillo, FJM; Romero, A., Generalized maximal surfaces in Lorentz-Minkowski space \(\mathbb{L}^3\), Math. Proc. Cambridge Philos. Soc., 111, 3, 515-524 (1992) · Zbl 0824.53061 · doi:10.1017/S0305004100075587
[24] Evans, LC; Gariepy, RF, Measure theory and fine properties of functions Studies in Advanced Mathematics, viii+268 (1992), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0804.28001
[25] Fernández, I.; López, FJ; Souam, R., The space of complete embedded maximal surfaces with isolated singularities in the 3-dimensional Lorentz-Minkowski space, Math. Ann., 332, 3, 605-643 (2005) · Zbl 1081.53052 · doi:10.1007/s00208-005-0642-6
[26] Flaherty, F., The boundary value problem for maximal hypersurfaces, Proc. Natl. Acad. Sci. USA, 76, 4765-4767 (1979) · Zbl 0428.49031 · doi:10.1073/pnas.76.10.4765
[27] Fortunato, D.; Orsina, L.; Pisani, L., Born-Infeld type equations for electrostatic fields. (English summary), J. Math. Phys., 43, 11, 5698-5706 (2002) · Zbl 1060.78004 · doi:10.1063/1.1508433
[28] Fujimori, S.; Kim, YW; Koh, SE; Rossman, W.; Shin, H.; Takahashi, H.; Umehara, M.; Yamada, K.; Yang, SD, Zero mean curvature surfaces in \(\mathbb{L}^3\) containing a light-like line, C. R. Math. Acad. Sci. Paris, 350, 21-22, 975-978 (2012) · Zbl 1257.53090 · doi:10.1016/j.crma.2012.10.024
[29] Fujimori, S.; Saji, K.; Umehara, M.; Yamada, K., Singularities of maximal surfaces, Math. Z., 259, 4, 827-848 (2008) · Zbl 1145.57026 · doi:10.1007/s00209-007-0250-0
[30] Gálvez, JA; Jiménez, A.; Mira, P., Isolated singularities of the prescribed mean curvature equation in Minkowski 3-space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35, 6, 1631-1644 (2018) · Zbl 1400.35124 · doi:10.1016/j.anihpc.2018.01.004
[31] Gerhardt, C., \(H\)-Surfaces in Lorentzian Manifolds, Comm. Math. Phys., 89, 1983, 523-553 (1983) · Zbl 0519.53056 · doi:10.1007/BF01214742
[32] Gibbons, GW, Born-Infeld particles and Dirichlet \(p\)-branes, Nuclear Phys. B, 514, 3, 603-639 (1998) · Zbl 0917.53032 · doi:10.1016/S0550-3213(97)00795-5
[33] Gilbarg, D.; Trudinger, NS, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. (2001), Berlin: Springer-Verlag, Berlin · Zbl 1042.35002
[34] Haarala, A.: The electrostatic Born-Infeld equations with integrable charge densities. available at arXiv:2006.08208 [math.AP] (2020)
[35] Kiessling, M.K.-H.: On the quasi-linear elliptic PDE \(-\nabla \cdot (\nabla u / \sqrt{1-|\nabla u|^2})= 4\pi \sum_k a_k \delta_{s_k}\) in physics and geometry. Comm. Math. Phys. 314, 509-523 (2012). Correction: Comm. Math. Phys. 364, 825-833 (2018) · Zbl 1253.35058
[36] Kiessling, MK-H, Electromagnetic field theory without divergence problems. I. The Born legacy, J. Statist. Phys., 116, 1-4, 1057-1122 (2004) · Zbl 1123.81427 · doi:10.1023/B:JOSS.0000037250.72634.2a
[37] Klyachin, A.A., Miklyukov, V.M.: The existence of solutions with singularities of the equation of maximal surfaces in a Minkowski space. (Russia) Mat. Sb. 184(9), 103-124 (1993); English transl. in Russian Acad. Sci. Sb. Math. 80(1), 87-104 (1995) · Zbl 0824.53062
[38] Klyachin, A.A., Miklyukov, V.M.: Traces of functions with spacelike graphs and a problem of extension with constraints imposed on the gradient. (Russian) Mat. Sb. 183(7), 49-64 (1992); English transl. in Russian Acad. Sci. Sb. Math. 76(2), 305-316 (1993) · Zbl 0791.53023
[39] Klyachin, A.A.: Description of a set of entire solutions with singularities of the equation of maximal surfaces. (Russian) Mat. Sb. 194, 83-104 (2003); English transl. in Sb. Math. 194, 1035-1054 (2003) · Zbl 1115.35049
[40] Klyachin, VA, Zero mean curvature surfaces of mixed type in Minkowski space, Izv. Math., 67, 209-224 (2003) · Zbl 1076.53015 · doi:10.1070/IM2003v067n02ABEH000425
[41] Kobayashi, O., Maximal surfaces with conelike singularities, J. Math. Soc. Japan, 36, 4, 609-617 (1984) · Zbl 0548.53006 · doi:10.2969/jmsj/03640609
[42] Marsden, JE; Tipler, FJ, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66, 3, 109-139 (1980) · doi:10.1016/0370-1573(80)90154-4
[43] Maz’ya, V.G., Shaposhnikova, T.O.: Theory of Sobolev multipliers. With applications to differential and integral operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 337. Springer-Verlag, Berlin. xiv+609 pp (2009) · Zbl 1157.46001
[44] Miklyukov, V.M.: Singularity sets of solutions of the equation of maximal surfaces in Minkowski space. (Russian) Sibirsk. Mat. Zh. 33(6), 131-140, 231 (1992); translation in Siberian Math. J. 33 (1992)(6), 1066-1075 (1993) · Zbl 0834.35025
[45] Munkres, JR, Topology (2000), Upper Saddle River, NJ: Prentice Hall Inc, Upper Saddle River, NJ · Zbl 0951.54001
[46] Pauli, W.: Theory of relativity. Translated from the German by G. Field, with supplementary notes by the author Pergamon Press, New York-London-Paris-Los Angeles (1958) · Zbl 0101.43403
[47] Plebański, J.: Lecture notes on nonlinear electrodynamics. NORDITA (1970)
[48] Ponce, A.C.: Elliptic PDEs, measures and capacities. From the Poisson equations to nonlinear Thomas-Fermi problems. EMS Tracts in Mathematics, 23. European Mathematical Society (EMS), Zürich, (2016) · Zbl 1357.35003
[49] Pryce, MHL, The two-dimensional electrostatic solutions of Born’s new field equations, Proc. Camb. Phil. Soc., 31, 50-68 (1935) · JFM 61.0831.03 · doi:10.1017/S0305004100012937
[50] Schwarzschild, K.: Zwei Formen des Princips der kleinsten Action in der Electronentheorie. Nachr. Ges. Wiss. Göttingen, 126-131 (1903)
[51] Stumbles, S., Hypersurfaces of constant mean extrinsic curvature, Ann. Phys., 133, 28-56 (1980) · Zbl 0472.53063 · doi:10.1016/0003-4916(81)90240-2
[52] Treibergs, A., Entire Spacelike Hypersurfaces of Constant Mean Curvature in Minkowski Space, Invent. Math., 66, 39-56 (1982) · Zbl 0483.53055 · doi:10.1007/BF01404755
[53] Umehara, M., Yamada, K.: Surfaces with light-like points in Lorentz-Minkowski 3-space with applications. Lorentzian geometry and related topics, 253-273. Springer Proc. Math. Stat., 211, Springer, Cham (2017) · Zbl 1402.53007
[54] Umehara, M.; Yamada, K., Maximal surfaces with singularities in Minkowski space, Hokkaido Math. J., 35, 13-40 (2006) · Zbl 1109.53016 · doi:10.14492/hokmj/1285766302
[55] Umehara, M.; Yamada, K., Hypersurfaces with light-like points in a Lorentzian manifold, J. Geom. Anal., 29, 4, 3405-3437 (2019) · Zbl 1430.53009 · doi:10.1007/s12220-018-00118-7
[56] Wang, C.: An Introduction of Infinity Harmonic Functions. Unpublished notes (2008). Available at https://www.math.purdue.edu/ wang2482/
[57] Willem, M., Functional analysis. Fundamentals and applications. Cornerstones. (2013), New York: Birkhäuser/Springer, New York · Zbl 1284.46001 · doi:10.1007/978-1-4614-7004-5
[58] Yang, Y., Classical solutions in the Born-Infeld theory, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456, 1995, 615-640 (2000) · Zbl 1122.78301 · doi:10.1098/rspa.2000.0533
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.