×

Equilibrium measures and equilibrium potentials in the Born-Infeld model. (English. French summary) Zbl 1440.35184

Summary: In this paper, we consider the electrostatic Born-Infeld model \[ \begin{cases} -\operatorname{div}\biggl(\frac{\nabla\phi}{\sqrt{1-|\nabla\phi|^2}}\biggr) \quad &= \quad\rho\quad\text{in }\mathbb{R}^N, \\ \qquad\lim_{|x|\to\infty}\phi(x) &=\quad 0 \end{cases}\tag{\(\mathcal{BI}\)} \] where \(\rho\) is a charge distribution on the boundary of a bounded domain \(\Omega\subset\mathbb{R}^N\), with \(N\geqslant 3\). We are interested in its equilibrium measures, i.e. charge distributions which minimize the electrostatic energy of the corresponding potential among all possible distributions with fixed total charge. We prove existence of equilibrium measures and we show that the corresponding equilibrium potential is unique and constant in \(\overline{\Omega}\). Furthermore, for smooth domains, we obtain the uniqueness of the equilibrium measure, we give its precise expression, and we verify that the equilibrium potential solves \((\mathcal{BI})\). Finally we characterize balls in \(\mathbb{R}^N\) as the unique sets among all bounded \(C^{2,\alpha}\)-domains \(\Omega\) for which the equilibrium distribution is a constant multiple of the surface measure on \(\partial\Omega\). The same results are obtained also for Taylor approximations of the electrostatic energy.

MSC:

35J93 Quasilinear elliptic equations with mean curvature operator
35Q60 PDEs in connection with optics and electromagnetic theory
78A30 Electro- and magnetostatics

References:

[1] Alexandrov, A. D., A characteristic property of spheres, Ann. Mat. Pura Appl. (4), 58, 303-315 (1962) · Zbl 0107.15603
[2] Bartnik, R.; Simon, L., Spacelike hypersurfaces with prescribed boundary values and mean curvature, Commun. Math. Phys., 87, 131-152 (1982) · Zbl 0512.53055
[3] Bereanu, C.; Jebelean, P.; Mawhin, J., The Dirichlet problem with mean curvature operator in Minkowski space – a variational approach, Adv. Nonlinear Stud., 14, 315-326 (2014) · Zbl 1305.35030
[4] Billingsley, P., Convergence of Probability Measures, Wiley Series in Probability and Statistics: Probability and Statistics (1999), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0172.21201
[5] Bonheure, D.; Iacopetti, A., Spacelike radial graphs of prescribed mean curvature in the Lorentz-Minkowski space, Anal. PDE, 12, 1805-1842 (2019) · Zbl 1430.53008
[6] Bonheure, D.; Iacopetti, A., On the regularity of the minimizer of the electrostatic Born-Infeld energy, Arch. Ration. Mech. Anal., 232, 697-725 (2019) · Zbl 1411.49020
[7] Bonheure, D.; d’Avenia, P.; Pomponio, A., On the electrostatic Born-Infeld equation with extended charges, Commun. Math. Phys., 346, 877-906 (2016) · Zbl 1365.35170
[8] Born, M., Modified field equations with a finite radius of the electron, Nature, 132, 282 (1933) · JFM 59.0803.14
[9] Born, M., On the quantum theory of the electromagnetic field, Proc. R. Soc. Lond. Ser. A, 143, 410-437 (1934) · Zbl 0008.13803
[10] Born, M.; Infeld, L., Foundations of the new field theory, Nature, 132, 1004 (1933) · Zbl 0008.18405
[11] Born, M.; Infeld, L., Foundations of the new field theory, Proc. R. Soc. Lond. Ser. A, 144, 425-451 (1934) · JFM 60.0750.02
[12] Brenier, Y., Hydrodynamic structure of the augmented Born-Infeld equations, Arch. Ration. Mech. Anal., 172, 65-91 (2004) · Zbl 1055.78003
[13] Calabi, E., Examples of Bernstein problems for some nonlinear equations, (Global Analysis, Proc. Sympos. Pure Math., vol. XV. Global Analysis, Proc. Sympos. Pure Math., vol. XV, Berkeley, Calif., 1968 (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 223-230 · Zbl 0211.12801
[14] Carley, H.; Kiessling, M. K.-H., Constructing graphs over \(\mathbb{R}^n\) with small prescribed mean-curvature, Math. Phys. Anal. Geom., 18, 1, Article 11 pp. (2015) · Zbl 1338.35168
[15] Cheng, S. Y.; Yau, S. T., Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104, 407-419 (1976) · Zbl 0352.53021
[16] Ebenfelt, P.; Khavinson, D.; Shapiro, H., A free boundary problem related to single-layer potentials, Ann. Acad. Sci. Fenn., Math., 27, 1, 21-46 (2002) · Zbl 1035.31001
[17] Ecker, K., Area maximizing hypersurfaces in Minkowski space having an isolated singularity, Manuscr. Math., 56, 375-397 (1986) · Zbl 0594.58023
[18] Ekeland, I.; Témam, R., Convex Analysis and Variational Problems (1999), SIAM: SIAM Philadelphia · Zbl 0939.49002
[19] Fortunato, D.; Orsina, L.; Pisani, L., Born-Infeld type equations for electrostatic fields, J. Math. Phys., 43, 5698-5706 (2002) · Zbl 1060.78004
[20] Gardiner, S., An equilibrium measure characterization of circles, Forum Math., 14, 953-954 (2002) · Zbl 1007.31001
[21] Garofalo, N.; Sartori, E., Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates, Adv. Differ. Equ., 4, 137-161 (1999) · Zbl 0951.35045
[22] Gelfand, I. M.; Fomin, S. V., Calculus of Variations (1963), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, N.J. · Zbl 0127.05402
[23] Gerhardt, C., H-surfaces in Lorentzian manifolds, Commun. Math. Phys., 89, 523-553 (1983) · Zbl 0519.53056
[24] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer-Verlag: Springer-Verlag Berlin · Zbl 1042.35002
[25] Hewitt, E.; Stromberg, K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Graduate Texts in Mathematics, vol. 25 (1975), Springer-Verlag: Springer-Verlag New York-Heidelberg, x+476 pp · Zbl 0307.28001
[26] Kiessling, M. K.-H., Some uniqueness results for stationary solutions to the Maxwell-Born-Infeld field equations and their physical consequences, Phys. Lett. A, 375, 3925-3930 (2011) · Zbl 1254.78028
[27] Kiessling, M. K.-H., On the quasi-linear elliptic PDE \(- \operatorname{\nabla} \cdot(\operatorname{\nabla} u / \sqrt{ 1 - | \operatorname{\nabla} u |^2}) = 4 \pi \sum_k a_k \delta_{s_k}\) in physics and geometry, Commun. Math. Phys., 314, 509-523 (2012) · Zbl 1253.35058
[28] Kiessling, M. K.-H., Correction to: on the quasi-linear elliptic PDE \(- \operatorname{\nabla} \cdot(\operatorname{\nabla} u / \sqrt{ 1 - | \operatorname{\nabla} u |^2}) = 4 \pi \sum_k a_k \delta_{s_k}\) in physics and geometry, Commun. Math. Phys., 364, 825-833 (2018) · Zbl 1407.35086
[29] Klyachin, A. A.; Miklyukov, V. M., Existence of solutions with singularities for the maximal surface equation in Minkowski space, Russ. Acad. Sci. Sb. Math., 80, 87-104 (1995) · Zbl 0824.53062
[30] Landkof, N. S., Foundations of Modern Potential Theory (1972), Springer Verlag: Springer Verlag Berlin · Zbl 0253.31001
[31] Lieberman, G. M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 1203-1219 (1988) · Zbl 0675.35042
[32] López, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7, 44-107 (2014) · Zbl 1312.53022
[33] Mallory, K.; Van Gorder, R.; Vajravelu, K., Several classes of exact solutions to the 1+1 Born-Infeld equation, Commun. Nonlinear Sci. Numer. Simul., 19, 1669-1674 (2014) · Zbl 1457.78004
[34] Mendez, O.; Reichel, W., Electrostatic characterization of spheres, Forum Math., 12, 223-245 (2000) · Zbl 0948.31004
[35] Reichel, W., Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwend., 15, 619-635 (1996) · Zbl 0857.35010
[36] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields (1997), Springer Verlag: Springer Verlag Berlin · Zbl 0881.31001
[37] Schrödinger, E., A new exact solution in non-linear optics. (Two-wave-system), Proc. R. Ir. Acad. A, 49, 59-66 (1943) · Zbl 0063.06823
[38] Serre, D., Hyperbolicity of the nonlinear models of Maxwell’s equations, Arch. Ration. Mech. Anal., 172, 309-331 (2004) · Zbl 1065.78005
[39] Serrin, J., A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43, 304-318 (1971) · Zbl 0222.31007
[40] Speck, J., The nonlinear stability of the trivial solution to the Maxwell-Born-Infeld system, J. Math. Phys., 53, Article 083703 pp. (2012), 83 pp · Zbl 1278.83026
[41] Treibergs, A., Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 66, 39-56 (1982) · Zbl 0483.53055
[42] Wermer, J., Potential Theory, Lecture Notes in Mathematics, vol. 408 (1981), Springer Verlag: Springer Verlag Berlin · Zbl 0446.31001
[43] Yang, Y., Classical solutions in the Born-Infeld theory, R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 456, 615-640 (2000) · Zbl 1122.78301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.