×

A new method for the numerical solution of vorticity-streamfunction formulations. (English) Zbl 1228.76115

Summary: A lattice Boltzmann model for vorticity-streamfunction formulations is proposed in this paper. The present model was validated by several benchmark problems. Excellent agreement between the present results and other numerical data shows that this model is an efficient numerical method for the numerical solution of vorticity-streamfunction formulations.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FDLIB
Full Text: DOI

References:

[1] Chaviaropoulos, P.; Giannakoglou, K., A vorticity-streamfunction formulation for steady incompressible two-dimensional flows, Int. J. Numer. Methods Fluids, 23, 431-444 (1996) · Zbl 0863.76041
[2] Majda, A. J.; Bertozzi, A., Vorticity and Incompressible Flow (2001), Cambridge University Press: Cambridge University Press Cambridge
[3] Orszag, S.; Israeli, M., Numerical simulation of viscous incompressible flows, Ann. Rev. Fluid Mech., 6, 281-318 (1974) · Zbl 0295.76016
[4] L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, Birkhäuser, Basle, 1983.; L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations, Birkhäuser, Basle, 1983. · Zbl 0784.76020
[5] van Heijst, G. J.F.; Clercx, H. J.H., Laboratory modeling of geophysical vortices, Ann. Rev. Fluid Mech., 41, 143-164 (2009) · Zbl 1157.76012
[6] Langlois, W. E., Buoyancy-driven flows in crystal-growth melts, Ann. Rev. Fluid Mech., 17, 191-215 (1985)
[7] Brown, M. J.; Ingber, M. S., Parallelization of a vorticity formulation for the analysis of incompressible viscous fluid flows, Int. J. Numer. Methods Fluids, 39, 979-999 (2002) · Zbl 1101.76353
[8] Chung, T. J., Computational Fluid Dynamics (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1037.76001
[9] Gatski, T. B.; Grosch, C. E.; Rose, M. E., The numerical solution of the Navier-Stokes equations for 3-dimensional, unsteady, incompressible flows by compact schemes, J. Comput. Phys., 82, 298-329 (1989) · Zbl 0667.76051
[10] Daube, O., Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique, J. Comput. Phys., 103, 402-414 (1992) · Zbl 0763.76046
[11] Chorin, A. J.; Marsden, J. E., A Mathematical Introduction to Fluid Mechanics (1990), Springer Verlag: Springer Verlag Berlin · Zbl 0712.76008
[12] Morino, L., Helmholtz decomposition revisited: vorticity generation and trailing edge condition, Comput. Mech., 1, 65-90 (1986) · Zbl 0625.76027
[13] Tezduyar, T. E.; Liou, J.; Ganjoo, D. K.; Behr, M., Solution techniques for the vorticity-streamfunction formulation of two-dimensional unsteady incompressible flows, Int. J. Numer. Methods Fluids, 11, 515-539 (1990) · Zbl 0711.76020
[14] Schamel, H.; Das, N., Scalar vortex dynamics of incompressible fluids and plasmas in Lagrangian space, Phys. Plasmas, 8, 3120-3123 (2001)
[15] Pontrelli, G., Blood flow through an axisymmetric stenosis, Proc. Inst. Mech. Engrg. Part H, J. Engrg. Med., 215, 1-10 (2001)
[16] Baytas, A. C., Entropy generation for natural convection in an inclined porous cavity, Int. J. Heat Mass Transfer, 43, 2089-2099 (2000) · Zbl 0973.76082
[17] Luo, W. J.; Yang, R. J., Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity, Int. J. Heat Mass Transfer, 50, 2394-2405 (2007) · Zbl 1124.80345
[18] Thom, A., The flow past a circular cylinders at low speeds, Proc. Roy. Soc., Lond. Sect. A, 141, 651-669 (1933) · JFM 59.0765.01
[19] Peyret, R., Spectral Methods for Incompressible Viscous Flow (2002), Springer Verlag: Springer Verlag New York · Zbl 1005.76001
[20] Barragy, E.; Carey, G. F., Stream function-vorticity driven cavity solution using \(p\) finite elements, Comput. Fluids, 26, 455-468 (1997) · Zbl 0898.76053
[21] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput. Fluids, 27, 421-433 (1998) · Zbl 0964.76066
[22] Shankar, P. N.; Deshpande, M. D., Fluid mechanics in the driven cavity, Ann. Rev. Fluid Mech., 32, 93-136 (2000) · Zbl 0988.76006
[23] Qian, Y.; d’Humieres, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479-484 (1992) · Zbl 1116.76419
[24] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Report., 222, 145-197 (1992)
[25] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30, 29-364 (1998) · Zbl 1398.76180
[26] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0990.76001
[27] Goldstein, R. J.; Ibele, W. E.; Patankar, S. V., Heat transfer - A review of 2003 literature, Int. J. Heat Mass Transfer, 49, 451-534 (2006) · Zbl 1189.76002
[28] Succi, S.; Foti, E.; Higuera, F., Three-dimensional flows in complex geometries with the lattice Boltzmann method, Europhys. Lett., 10, 433-438 (1989)
[29] Chen, S.; Dawson, S. P.; Doolen, G. D., Lattice methods and their applications to reacting systems, Comput. Chem. Engrg., 19, 617-646 (1995)
[30] Chen, H.; Kandasamy, S.; Orszag, S., Science, 301, 633-636 (2003)
[31] Qian, Y.; Succi, S.; Orszag, S., Recent advances in lattice Boltzmann computing, Ann. Rev. Comput. Phys., 3, 195-242 (1995)
[32] Hazi, G.; Imre, A. R.; Mayer, G., Lattice Boltzmann methods for two-phase flow modeling, Ann. Nucl. Energy, 29, 1421-1453 (2002)
[33] Yu, D.; Mei, R.; Luo, L. S., Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerospace Sci., 39, 329-367 (2003)
[34] Sukop, M. C.; Thorne, D. T., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (2006), Springer: Springer Heidelberg, Berlin, New York
[35] Chakraborty, S.; Chatterjee, D., An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport, J. Fluid Mech., 592, 155-175 (2007) · Zbl 1128.76048
[36] Chen, S.; Liu, Z.; He, Z., A new numerical approach for fire simulation, Int. J. Mod. Phys. C, 18, 187-202 (2007) · Zbl 1119.80378
[37] Guo, Z.; Zheng, C.; Shi, B., Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77, 036707-1-036707-12 (2008)
[38] Raabe, D., Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. Engrg., 12, 13-46 (2004)
[39] Meng, J.; Qian, Y.; Li, X., Lattice Boltzmann model for traffic flow, Phys. Rev. E, 77, 036108-1-036108-9 (2008)
[40] Furtado, K.; Yeomans, J. M., Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids, Phys. Rev. E, 73, 066124-1-066124-7 (2006)
[41] Martinez, D. O.; Matthaeus, W. H.; Chen, S., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids, 6, 1285-1298 (1994) · Zbl 0826.76069
[42] He, X.; Doolen, G. D.; Clark, T., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J. Comput. Phys., 179, 439-451 (2002) · Zbl 1130.76397
[43] Al-Jahmany, Y. Y.; Brenner, G.; Brunn, P. O., Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4:1 planar contraction, Int. J. Numer. Methods Fluids, 46, 903-920 (2004) · Zbl 1060.76636
[44] Al-Zoubi, A.; Brenner, G., Comparative study of thermal flows with different finite volume and lattice Boltzmann schemes, Int. J. Mod. Phys. C, 15, 307-319 (2004)
[45] Seta, T.; Takegoshi, E.; Okui, K., Lattice Boltzmann simulation of natural convection in porous media, Math. Comput. Simulat., 72, 195200 (2006) · Zbl 1116.76421
[46] Guo, Z.; Zheng, C.; Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, 046308-1-046308-6 (2002) · Zbl 1244.76102
[47] Buick, J. M.; Greated, C. A., Gravity in a lattice Boltzmann model, Phys. Rev. E, 61, 5307-5320 (2000)
[48] Huang, H.; Lee, T. S.; Shu, C., Hybrid lattice Boltzmann finite-difference simulation of axisymmetric swirling and rotating flows, Int. J. Numer. Methods Fluids, 53, 1707-1726 (2007) · Zbl 1370.76145
[49] Peng, Y.; Shu, C.; Chew, Y. T.; Qiu, J., Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method, J Comput. Phys., 186, 295-307 (2003) · Zbl 1072.76624
[50] Zhang, X.; Bengough, A. G.; Crawford, J. W.; Young, I. M., A lattice BGK model for advection and anisotropic dispersion equation, Adv. Water Res., 25, 1-8 (2002)
[51] Chen, S.; Liu, Z.; Zhang, C., A novel coupled lattice Boltzmann model for low Mach number combustion simulation, Appl. Math. Comput., 193, 266-284 (2007) · Zbl 1193.80026
[52] Liu, H. J.; Zou, C.; Shi, B. C., Int. J. Heat Mass Transfer, 49, 4672-4680 (2006) · Zbl 1121.76340
[53] Guo, Z. L.; Shi, B. C.; Zheng, C. G., A lattice BGK model for the Bouessinesq equation, Int. J. Numer. Fluids, 39, 325-342 (2002) · Zbl 1014.76071
[54] Ginzburg, I., Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation, Adv. Water Res., 28, 1171-1195 (2005)
[55] Ginzburg, I., Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations, Adv. Water Res., 28, 1196-1216 (2005)
[56] Chai, Z.; Shi, B., A novel lattice Boltzmann model for the Poisson equation, Appl. Math. Modell. (2007)
[57] He, X.; Ling, N., Lattice Boltzmann simulation of electrochemical systems, Comput. Phys. Commun., 129, 158-166 (2000) · Zbl 0976.76066
[58] Guo, Z.; Zhao, T. S.; Shi, Y., A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices, J. Chem. Phys., 122, 144907 (2005)
[59] Chai, Z.; Guo, Z.; Shi, B., Study of electro-osmotic flows in microchannels packed with variable porosity media via lattice Boltzmann method, J. Appl. Phys., 101, 104913-1-104913-8 (2007)
[60] Wang, J.; Wang, M.; Li, Z., Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels, J. Colloid. Interface Sci., 296, 729-736 (2006)
[61] Hirabayashi, M.; Chen, Y.; Ohashi, H., The lattice BGK model for the Poisson equation, JSME Int. J. Ser. B, 44, 1, 45-52 (2001)
[62] Melchionna, S.; Succi, S., Electrorheology in nanopores via lattice Boltzmann simulation, J. Chem. Phys., 120, 4492-4497 (2004)
[63] Cheng, M.; Hung, K. C., Vortex structure of steady flow in a rectangular cavity, Comput. Fluids, 35, 1046-1062 (2006) · Zbl 1177.76311
[64] Patil, D. V.; Lakshmisha, K. N.; Rogg, B., Lattice Boltzmann simulation of lid-driven flow in deep cavities, Comput. Fluids, 35, 1116-1125 (2006) · Zbl 1177.76324
[65] Ghia, U.; Ghia, K.; Shin, C., High-Re solutions for incompressible flow using Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[66] Pan, F.; Acrivos, A., Steady flows in rectangular cavities, J. Fluid Mech., 28, 643-655 (1967)
[67] Hou, S.; Zou, Q.; Chen, S.; Doolen, G.; Cogley, A. C., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118, 329-347 (1995) · Zbl 0821.76060
[68] Guo, Z. L.; Shi, B. C.; Wang, N. C., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165, 288-306 (2000) · Zbl 0979.76069
[69] C. Pozrikidis, Fluid Dynamics: Theory, Computation, and Numerical Simulation, Accompanied by the Software Library FDLIB. Kluwer (Springer), Heidelberg, Berlin, New York, 2001. Computer source code could be donwloaded from <http://dehesa.freeshell.org/FDLIB/fdlib.shtml>.; C. Pozrikidis, Fluid Dynamics: Theory, Computation, and Numerical Simulation, Accompanied by the Software Library FDLIB. Kluwer (Springer), Heidelberg, Berlin, New York, 2001. Computer source code could be donwloaded from <http://dehesa.freeshell.org/FDLIB/fdlib.shtml>. · Zbl 1004.76002
[70] Erturk, E.; Corke, T. C.; Gokcol, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high reynolds numbers, Int. J. Numer. Methods Fluids, 48, 747-774 (2005), Computer source code could be donwloaded from · Zbl 1071.76038
[71] Albensoeder, S.; Kuhlmann, H. C.; Rath, H. J., Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities, Theoret. Comput. Fluid Dyn., 14, 223-241 (2001) · Zbl 0973.76023
[72] Wahba, E. M., Multiplicity of states for two-sided and four-sided lid driven cavity flows, Comput. Fluids (2008) · Zbl 1237.76031
[73] Tiwari, R. K.; Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50, 2002-2018 (2007) · Zbl 1124.80371
[74] Blohm, CH.; Kuhlmann, H. C., The two-sided lid-driven cavity: experiments on stationary and time-dependent flows, J. Fluid Mech., 450, 67-95 (2002) · Zbl 1049.76501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.