×

Helmholtz decomposition revisited: Vorticity generation and trailing edge condition. I. Incompressible flows. (English) Zbl 0625.76027

Exterior incompressible viscous and nonviscous flows are examined by means of the Helmholtz decomposition, with special emphasis on the issue of the boundary conditions for the vorticity. Using physical considerations, the author shows that vorticity is generated by the boundary condition on the normal component of the velocity, for both inviscid and viscous flows. In viscous flows, the vorticity is then diffused into the surroundings: this yields that the no-slip conditions are thus automatically satisfied (since the presence of a vortex layer on the surface is required to obtain a velocity slip at the boundary). This result is then used to show that in order for the solution to the Euler equations to be the limit of the solution to the Navier-Stokes equations, a trailing-edge condition (that the vortices be shed as soon as they are formed) must be satisfied. Many of the results follow by physical considerations, without a rigorous proof. The use of the results for a computational scheme is also discussed.
Reviewer: P.Secchi

MSC:

76B47 Vortex flows for incompressible inviscid fluids
Full Text: DOI

References:

[1] Batchelor, G.K. (1967): An introduction to fluid dynamics. Cambridge: Cambridge Univers. Press · Zbl 0152.44402
[2] Bykhovskiy, E.B.; Smirnov, N.V. (1960): On orthogonal expansions of the space of vector functions which are square-summable over a given domain and the vector analysis operators. Trudy Mat. Inst. Steklova 59, 5. Academy of Sciences USSR Press, pp. 5-36. (Also available as NASA TM-77051, 1983)
[3] Campbell, R.G. (1973): Foundations of fluid flow theory, p. 258. Reading: Addison-Wesley Publ.
[4] Del Marco, S.P. (1986): The mathematical foundations of the scalar-vector potential approach to analysing viscous flows. Ph.D. Thesis, Boston Univers. Dept. of Mathematics
[5] El Refaee, M.M.; Wu, J.C.; Lekoudis, S.G. (1982): Solutions of the compressible Navier-Stokes equations using the integral method. AIAA J. 20, 356-362 · Zbl 0506.76076 · doi:10.2514/3.7917
[6] Hess, J.L. (1977): A fully automatic combined potential-flow boundary layer procedure for calculation viscous effects on the lifts and pressure distributions of arbitrary three-dimensional configurations. Long Beach: Douglas Aircraft Co., MDC J7491
[7] Hirasaki, G.J.; Hellums, J.D. (1968): A general formulation of the boundary conditions of the vector potential in three-dimensional hydrodynamics. Quart. Appl. Math. 26, 331-342 · Zbl 0272.76008 · doi:10.1090/qam/234676
[8] Hirasaki, G.J.; Hellums, J.D. (1970): Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Quart. Appl. Math. 28, 293-296 · Zbl 0229.76031 · doi:10.1090/qam/99793
[9] Joukowski, N. (1907): On the adjunct vortices, (in Russian). Obshchestvo liubitelei estestvoznaniia, antropologii i etnografee, Moskva, Izaviestiia, 112, Transactions of the Physical Section, vol. 13, pp. 12-25
[10] Kutta, J. (1902): Auftriebskräfte in strömenden Flüssigkeiten. Illustrierte Aueronautische Mitteilungen, vol. 6, pp. 133-135
[11] Ladyzhenskaya, O.A. (1963): The mathematical theory of viscous incompressible flows. New York: Gordon and Bread · Zbl 0121.42701
[12] Lamb, H. (1932): Hydrodynamics, 6th ed. Cambridge: Cambridge University Press · JFM 58.1298.04
[13] Lemmerman, L.A.; Sonnad, V.R. (1979): Three-dimensional viscous-inviscid coupling using surface transpiration. J. Aircraft 16, 353-358 · doi:10.2514/3.58531
[14] Lighthill, M.J. (1958): On displacement thickness. J. Fluid Mech. 4, 383-392 · Zbl 0081.40805 · doi:10.1017/S0022112058000525
[15] Lighthill, M. J.; Rosenhead, L. (ed.), Introduction to boundary layer theory, 46-113 (1963), Oxford
[16] Maskew, B. (1982): Prediction of subsonic aerodynamic characteristics: A case for low-order panel methods. J. Aircraft 19, 157-163 · doi:10.2514/3.57369
[17] Morino, L. (1973): Unsteady compressible flow around lifting bodies: General theory. AIAA Paper No. 73-196, AIAA 11th Aerospace Sciences Meeting, Washington, D.C.
[18] Morino, L. (1974): A general theory of unsteady compressible potential aerodynamics. NASA CR-2464 · Zbl 0276.76027
[19] Morino, L. (1985): Scalar/vector potential formulation for compressible viscous unsteady flows. NASA CR-3921
[20] Morino, L. (1986): Material contravariant components: Vorticity transport and vortex theorems. AIAA J. 26, No. 3, 526-528 · doi:10.2514/3.9300
[21] Morino, L.; Bharadvaj, B. (1985): Two methods for viscous and inviscid free-wake analysis of helicopter rotors. Boston: Boston University, CCAD-TR-85-02
[22] Morino, L.; Kaprielian, Z., Jr.; Sipcic, S.R. (1985): Free wake analysis of helicopter rotors. Vertica 9, 127-140
[23] Morino, L.; Kuo, C. C. (1974): Subsonic potential aerodynamics for complex configurations: A general theory. AIAA J. 12, 191-197 · Zbl 0295.65046 · doi:10.2514/3.49487
[24] Morton, B.R. (1984): The generation and decay of vorticity. Geophys. Astrophys. Fluid Dynamics 28, 277-308 · Zbl 0551.76019 · doi:10.1080/03091928408230368
[25] Quartapelle, L.; Valz-Gris, F. (1981): Projection conditions on the vorticity in viscous incompressible flows. Internal. J. for Numerical Methods in Fluids, 1, 129-144 · Zbl 0465.76028 · doi:10.1002/fld.1650010204
[26] Richardson, S.M.; Cornish, A.R.H. (1977): Solution of three-dimensional incompressible flow problems. J. Fluid Mech. 82, 309-319 · Zbl 0367.76029 · doi:10.1017/S0022112077000688
[27] Serrin, F.; Fluegge, S. (ed.), Mathematical principle of classical fluid mechanics (1959), Berlin, Göttingen, Heidelberg
[28] Soohoo, P.; Noll, R.B.; Morino, L.; Ham, N.D. (1978): Rotor wake effects on hub/pylon flow, vol. 1, Theoretical formulation. Appl. Technology Lab., U.S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Va., USARTL-TR-78-1A, p. 108
[29] Sugavanam, A.; Wu, J.C. (1982): Numerical study of separated turbulent flow over airfoils. AIAA J. 20, 464-470 · Zbl 0486.76018 · doi:10.2514/3.51096
[30] Thompson, J.F.; Shanks, S.P.; Wu, J.C. (1974): Numerical solution of three-dimensional Navier-Stokes equations showing trailing edge vortices. AIAA J. 12, 787-794 · Zbl 0284.76023 · doi:10.2514/3.49351
[31] Weyl, H. (1940): The method of orthogonal projection in potential theory. Duke Math. J. 7, 411-444 · JFM 66.0444.01 · doi:10.1215/S0012-7094-40-00725-6
[32] Wu, J.C. (1976): Numerical boundary conditions for viscous flow problems. AIAA J. 14, 1042-1049 · Zbl 0343.76006 · doi:10.2514/3.61439
[33] Wu, J.C. (1981): Aerodynamic force and moment in steady and time-dependent viscous flows. AIAA J. 19, 432-441 · Zbl 0461.76041 · doi:10.2514/3.50966
[34] Wu, J. C.; Shaw, R. P. (ed.); Banerjee, P. K. (ed.), Problems of general viscous flows, 69-109 (1982), London · Zbl 0479.76009
[35] Wu, J.C. (1984): Fundamental solutions and numerical methods for flow problems. Intern. J. Numer. Meth. in Fluid 4, 185-201 · Zbl 0538.76007 · doi:10.1002/fld.1650040207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.