×

Existence of the unique nontrivial solution for mixed fractional differential equations. (English) Zbl 1478.34009

The authors investigate the existence of solutions for the fractional differential equation \[ ^CD_{1-}^{\alpha}D_{0+}^{\beta}x(t)+f(t,x(t))=b, \] where \(0<t<1\), and \(x(0)=x'(1)=D_{0+}^{\beta}x(1)=0\). Here \(^CD_{1-}^{\alpha}\) is the right-sided Caputo fractional derivative and \(D_{0+}^{\beta}\) is the leftsided Riemann-Liouville fractional derivative and \(\alpha \in (0,1]\), \( \beta \in (1,2]\) with \(\alpha +\beta >2\). The function \(f:[0,1]\times \mathbb{R} \to \mathbb{R}\) is continuous, \(b>0\) is a constant. The Greens function of the linear homogeneous version of the equation is deduced. Results on mixed monotone and on concave operators are given. Employing these results and making some monotonicity and growth assumptions on \(f\) allows the authors to deduce existence and uniqueness of solutions of the fractional differential equation above. Two numerical examples are given.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations
34B27 Green’s functions for ordinary differential equations

References:

[1] Çetinkaya, A., The incomplete second Appell hypergeometric functions, Applied Mathematics and Computation, 219, 15, 8332-8337 (2013) · Zbl 1318.33001 · doi:10.1016/j.amc.2012.11.050
[2] N’Guérékata, G. M.; Diagana, T.; Pankov, A., Abstract differential and difference equations, Advances in Difference Equations, 2010 (2010) · Zbl 1213.34003 · doi:10.1155/2010/857306
[3] Ilhan, E.; Kıymaz, I. O., A generalization of truncated M-fractional derivative and applications to fractional differential equations, Applied Mathematics and Nonlinear Sciences, 5, 1, 171-188 (2020) · Zbl 07664125 · doi:10.2478/amns.2020.1.00016
[4] Asif, A.; Aydi, H.; Arshad, M.; Ali, Z., A novel picture fuzzy-Banach space with some new contractive conditions and their fixed point results, Journal of Function Spaces, 2020 (2020) · Zbl 1520.47121 · doi:10.1155/2020/6305856
[5] Ragusa, M. A., Commutators of fractional integral operators on vanishing-Morrey spaces, Journal of Global Optimization, 40, 1-3, 361-368 (2008) · Zbl 1143.42020 · doi:10.1007/s10898-007-9176-7
[6] Guariglia, E., Riemann zeta fractional derivative – functional equation and link with primes, Advances in Difference Equations, 2019, 1 (2019) · Zbl 1459.26011 · doi:10.1186/s13662-019-2202-5
[7] Abbas, M. I.; Ragusa, M. A., On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13, 2, 264 (2021) · doi:10.3390/sym13020264
[8] Guariglia, E., Harmonic symmetry of the Riemann zeta fractional derivative, AIP Conference Proceedings, 2046, article 020035 (2018)
[9] Li, C.; Dao, X.; Guo, P., Fractional derivatives in complex planes, Nonlinear Analysis, 71, 5-6, 1857-1869 (2009) · Zbl 1173.26305 · doi:10.1016/j.na.2009.01.021
[10] Guariglia, E.; Silvestrov, S., A functional equation for the Riemann zeta fractional derivative, AIP Conference Proceedings, 1798 (2017)
[11] Zhang, Y.; Cattani, C.; Yang, X. J., Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 2015, 17, 6753-6764 (2015)
[12] Gao, W.; Baskonus, H. M.; Shi, L., New investigation of bats-hostsreservoir-people coronavirus model and application to 2019-nCoV system, Advances in Difference Equations, 2020 (2020) · Zbl 1485.92129
[13] Gao, W.; Veeresha, P.; Prakasha, D. G.; Baskonus, H. M., Novel dynamic structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biology, 9, 5, 1-14 (2020)
[14] Gao, W.; Veeresha, P.; Prakasha, D. G.; Baskonus, H. M.; Yel, G., New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos, Solitons & Fractals, 134, article 109696 (2020) · Zbl 1483.92078 · doi:10.1016/j.chaos.2020.109696
[15] Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A., A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 504-515 (2018) · Zbl 1426.68015 · doi:10.1016/j.amc.2017.08.048
[16] Wang, J.; Wen, Y.; Gou, Y.; Ye, Z.; Chen, H., Fractional-order gradient descent learning of BP neural networks with Caputo derivative, Neural Networks, 89, 19-30 (2017) · Zbl 1434.68466 · doi:10.1016/j.neunet.2017.02.007
[17] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), New York: John Wiley, New York · Zbl 0789.26002
[18] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integral and Derivatives: Theory and Applications (1993), Switzerland: Gordon and Breach Science Publishers, Switzerland · Zbl 0818.26003
[19] Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (1998), Academic Press · Zbl 0924.34008
[20] Kilbas, A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier B. V · Zbl 1092.45003
[21] Guo, Nonlinear Problems in Abstract Cones (1988), Academic Press · Zbl 0661.47045
[22] Krasnosel’skii, M. A.; Zabreiko, P. P., Geometrical Methods of Nonlinear Analysis (1984), Springer-Verlag · Zbl 0546.47030
[23] Song, S.; Cui, Y., Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance, Boundary Value Problems, 2020 (2020) · Zbl 1495.34040
[24] Lakoud, A. G.; Khaldi, R.; Kılıçman, A., Existence of solutions for a mixed fractional boundary value problem, Advances in Difference Equations, 2017 (2017) · Zbl 1422.34041
[25] Ahmad, S.; Ntouyas, K.; Alsaedi, A., Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Boundary Value Problems, 2019 (2019) · Zbl 1513.34015
[26] Jong, S.; Choi, H. C.; Ri, Y. H., Existence of positive solutions of a class of multi-point boundary value problems for_p_-Laplacian fractional differential equations with singular source terms, Communications in Nonlinear Science and Numerical Simulation, 72, 272-281 (2019) · Zbl 1464.34020 · doi:10.1016/j.cnsns.2018.12.021
[27] Guo, D., Existence and uniqueness of positive fixed points for mixed monotone operators and applications, Applicable Analysis, 46, 1-2, 91-100 (1992) · Zbl 0792.47053 · doi:10.1080/00036819208840113
[28] Wu, Y.; Liang, Z., Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Analysis: Theory, Methods & Applications, 65, 10, 1913-1924 (2006) · Zbl 1111.47049 · doi:10.1016/j.na.2005.10.045
[29] Wang, Z. L., \( \phi-\left( h , e\right)\)-concave operators and applications, Journal of Mathematical Analysis and Applications, 454, 2, 571-584 (2017) · Zbl 1419.34046 · doi:10.1016/j.jmaa.2017.05.010
[30] Ren, J.; Zhai, C., Some properties of sets, fixed point theorems in ordered product spaces and applications to a nonlinear system of fractional differential equations, Topological Methods in Nonlinear Analysis, 49, 2, 1-645 (2017) · Zbl 1461.47028 · doi:10.12775/tmna.2016.095
[31] Zhai, C.; Yang, C.; Zhang, X., Positive solutions for nonlinear operator equations and several classes of applications, Mathematische Zeitschrift, 266, 1, 43-63 (2010) · Zbl 1198.47078 · doi:10.1007/s00209-009-0553-4
[32] Wang, H.; Zhang, L., Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions, Bulletin des Sciences Mathmatiques, 166, 1-30 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.