×

Existence of solutions for a mixed fractional boundary value problem. (English) Zbl 1422.34041

Summary: In this paper, we prove the existence of solutions for a boundary value problem involving both left Riemann-Liouville and right Caputo-type fractional derivatives. For this, we convert the posed problem to a sum of two integral operators, then we apply Krasnoselskii’s fixed point theorem to conclude the existence of nontrivial solutions.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals

References:

[1] Agrawal, OP, Fractional variational calculus and transversality condition, J. Phys. A, Math. Gen., 39, 10375-10384, (2006) · Zbl 1097.49021 · doi:10.1088/0305-4470/39/33/008
[2] Atanackovic, TM; Stankovic, B, On a differential equation with left and right fractional derivatives, Fract. Calc. Appl. Anal., 10, 139-150, (2007) · Zbl 1131.34003
[3] Błaszczyk, T; Ciesielski, M, Numerical solution of fractional Sturm-Liouville equation in integral form, Fract. Calc. Appl. Anal., 17, 307-320, (2014) · Zbl 1305.34008
[4] Blaszczyk, T; Ciesielski, M, Fractional oscillator equation - transformation into integral equation and numerical solution, Appl. Math. Comput., 257, 428-435, (2015) · Zbl 1338.34012
[5] Blaszczyk, T, A numerical solution of a fractional oscillator equation in a non-resisting medium with natural boundary conditions, Rom. Rep. Phys., 67, 350-358, (2015)
[6] Blaszczyk, T; Ciesielski, M, Numerical solution of Euler-Lagrange equation with Caputo derivatives, Adv. Appl. Math. Mech., 9, 173-185, (2017) · Zbl 1499.65742 · doi:10.4208/aamm.2015.m970
[7] Guezane-Lakoud, A, Khaldi, R, Torres, DFM: On a fractional oscillator equation with natural boundary conditions. https://arxiv.org/pdf/1701.08962. To appear in Prog. Frac. Diff. Appl.
[8] Guezane Lakoud, A; Khaldi, R; Kılıçman, A, Solvability of a boundary value problem at resonance, SpringerPlus, 5, (2016) · doi:10.1186/s40064-016-3172-7
[9] Khaldi, R; Guezane-Lakoud, A, Higher order fractional boundary value problems for mixed type derivatives, J. Nonlinear Funct. Anal., 2017, (2017)
[10] Guezane-Lakoud, A; Kılıçman, A, Unbounded solution for a fractional boundary value problem, Adv. Differ. Equ., 2014, (2014) · Zbl 1419.34022 · doi:10.1186/1687-1847-2014-154
[11] Agarwal, RP, Bohner, M, Li, W-T: Nonoscillation and Oscillation Theory for Functional Differential Equations. CRC Press, Boca Raton (2004) · Zbl 1068.34002 · doi:10.1201/9780203025741
[12] Ahmad, B, Nonlinear fractional differential equations with anti-periodic type fractional boundary conditions, Differ. Equ. Dyn. Syst., 21, 387-401, (2013) · Zbl 1296.34009 · doi:10.1007/s12591-012-0154-2
[13] Franco, D; Nieto, JJ; O’Regan, D, Upper and lower solutions for first order problems with nonlinear boundary conditions, Extr. Math., 18, 153-160, (2003) · Zbl 1086.34509
[14] Khaldi, R; Guezane-Lakoud, A, Upper and lower solutions method for higher order boundary value problems, Prog. Fract. Differ. Appl., 3, 53-57, (2017) · doi:10.18576/pfda/030105
[15] Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier Science, Amsterdam (2006) · Zbl 1092.45003
[16] Ntouyas, SK; Tariboon, J; Sudsutad, W, Boundary value problems for Riemann-Liouville fractional differential inclusions with nonlocal Hadamard fractional integral conditions, Mediterr. J. Math., 13, 939-954, (2016) · Zbl 1408.34023 · doi:10.1007/s00009-015-0543-1
[17] Zhang, L; Ahmad, B; Wang, G, The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative, Appl. Math. Lett., 31, 1-6, (2014) · Zbl 1315.34016 · doi:10.1016/j.aml.2013.12.014
[18] Podlubny, I: Fractional Differential Equation. Academic Press, Sain Diego (1999) · Zbl 0924.34008
[19] Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993) · Zbl 0818.26003
[20] Smart, DR: Fixed Point Theorems. Cambridge Tracts in Mathematics, vol. 66. Cambridge University Press, London (1974) · Zbl 0297.47042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.