×

Solvability of mixed Hilfer fractional functional boundary value problems with \(p\)-Laplacian at resonance. (English) Zbl 1498.34037

Summary: This article investigates the existence of solutions of mixed Hilfer fractional differential equations with \(p\)-Laplacian under the functional boundary conditions at resonance. By defining Banach spaces with appropriate norms, constructing suitable operators, and using the extension of the continuity theorem, some of the current results are extended to the nonlinear situation, and some new existence results of the problem are obtained. Finally, an example is given to verify our main results.

MSC:

34A08 Fractional ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations

References:

[1] Matouk, A. E.; Khan, I., Complex dynamics and control of a novel physical model using nonlocal fractional differential operator with singular kernel, J. Adv. Res., 24, 463-474 (2020) · doi:10.1016/j.jare.2020.05.003
[2] Khater, M. M.A.; Baleanu, D., On abundant new solutions of two fractional complex models, Adv. Differ. Equ., 2020, 1 (2020) · Zbl 1482.35252 · doi:10.1186/s13662-020-02705-x
[3] Jannelli, A., Numerical solutions of fractional differential equations arising in engineering sciences, Mathematics, 8, 2 (2020) · doi:10.3390/math8020215
[4] Tarasov, V. E., Fractional nonlinear dynamics of learning with memory, Nonlinear Dyn., 100, 2, 1231-1242 (2020) · Zbl 1459.34046 · doi:10.1007/s11071-020-05602-w
[5] Ameen, I.; Baleanu, D.; Ali, H. M., An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment, Chaos Solitons Fractals, 137 (2020) · Zbl 1489.92134 · doi:10.1016/j.chaos.2020.109892
[6] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[7] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., Fractional order differential systems involving right Caputo and left Riemann-Liouville fractional derivatives with nonlocal coupled conditions, Bound. Value Probl., 2019, 1 (2019) · Zbl 1513.34015 · doi:10.1186/s13661-019-1222-0
[8] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[9] Asawasamrit, S.; Kijjathanakorn, A.; Ntouyas, S. K., Nonlocal boundary value problems for Hilfer fractional differential equations, Bull. Korean Math. Soc., 55, 6, 1639-1657 (2018) · Zbl 1408.34004
[10] Mali, A. D.; Kucche, K. D., Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 43, 15, 8608-8631 (2020) · Zbl 1457.34013 · doi:10.1002/mma.6521
[11] Ri, Y. D.; Choi, H. C.; Constructive, C. K.J., Existence of solutions of multi-point boundary value problem for Hilfer fractional differential equation at resonance, Mediterr. J. Math., 17, 1-20 (2020) · Zbl 1445.34021 · doi:10.1007/s00009-020-01512-8
[12] Li, X.; Wu, B., A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43, 108-113 (2015) · Zbl 1315.65060 · doi:10.1016/j.aml.2014.12.012
[13] Sun, B.; Jiang, W., Existence of solutions for functional boundary value problems at resonance on the half-line, Bound. Value Probl., 2020, 1 (2020) · Zbl 1496.34041 · doi:10.1186/s13661-020-01459-5
[14] Calamai, A.; Infante, G., Nontrivial solutions of boundary value problems for second-order functional differential equations, Ann. Mat. Pura Appl., 195, 3, 741-756 (2016) · Zbl 1354.34118 · doi:10.1007/s10231-015-0487-x
[15] Zhao, Z.; Liang, J., Existence of solutions to functional boundary value problem of second-order nonlinear differential equation, J. Math. Anal. Appl., 373, 2, 614-634 (2011) · Zbl 1208.34020 · doi:10.1016/j.jmaa.2010.08.011
[16] Kosmatov, N.; Jiang, W., Second-order functional problems with a resonance of dimension one, Differ. Equ. Appl., 3, 349-365 (2016) · Zbl 1347.34034
[17] Kosmatov, N.; Jiang, W., Resonant functional problems of fractional order, Chaos Solitons Fractals, 91, 573-579 (2016) · Zbl 1372.34048 · doi:10.1016/j.chaos.2016.08.003
[18] Leibenson, L. S., General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9, 1, 7-10 (1983)
[19] Liu, X.; Jia, M., The method of lower and upper solutions for the general boundary value problems of fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2018, 1 (2018) · Zbl 1445.34019 · doi:10.1186/s13662-017-1446-1
[20] Zhou, B.; Zhang, L.; Addai, E., Multiple positive solutions for nonlinear high-order Riemann-Liouville fractional differential equations boundary value problems with p-Laplacian operator, Bound. Value Probl., 2020, 1 (2020) · Zbl 1495.34048 · doi:10.1186/s13661-020-01336-1
[21] Li, Y.; Qi, A., Positive solutions for multi-point boundary value problems of fractional differential equations with p-Laplacian, Math. Methods Appl. Sci., 39, 6, 1425-1434 (2016) · Zbl 1338.34018 · doi:10.1002/mma.3579
[22] Jiang, W., Solvability of fractional differential equations with p-Laplacian at resonance, Appl. Math. Comput., 260, 48-56 (2015) · Zbl 1410.34020
[23] Ge, W.; Ren, J., An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Anal. TMA, 58, 477-488 (2004) · Zbl 1074.34014 · doi:10.1016/j.na.2004.01.007
[24] Kuang, J., Applied Inequalities, 132 (2014), Jinan: Shandong Science and Technology Press, Jinan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.