×

On the field intersection problem of solvable quintic generic polynomials. (English) Zbl 1204.12005

Let \(G\) be a finite group, \(k\) an arbitrary field and \(k(t)\) the rational function field over \(k\) with \(n\) indeterminates \( t = (t_{1}, t_{2},..., t_{n})\). A polynomial \(f_{t}^{G}(X) \in k(t)[X]\) is called k-generic for \(G\) if the Galois group of \(f_{t}^{G}(X)\) over \(k(t)\) is isomorphic to \(G\) and every \(G\)-Galois extension \(L/M\), where \(k \subset M\) and \(M\) is infinite, can be obtained as \(L = \text{Spl}_{M} f_{a}(X)\) the splitting field of \(f_{a}(X)\) over \(M\) for some \( a = (a_{1}, a_{2},..., a_{n}) \in M^{n}\).
The authors are interested to determine, for a field \(M\) containing \(k\) and \(a, b \in M^{n}\), the intersection of \(\text{Spl}_{M} f_{a}^{G}(X)\) and \(\text{Spl}_{M} f_{b}^{G}(X)\). In this paper, the authors study a method to give an answer to the intersection problem of \(k\)-generic polynomials via Tschirnhausen transformation and multi-resolvent polynomials. In particular, the authors study the case of quintic generic polynomials with two parameters and where \(G\) is a cyclic or dihedral group of degree \(5\), or the Frobenius group of order \(20\).

MSC:

12F10 Separable extensions, Galois theory
12F05 Algebraic field extensions
12F12 Inverse Galois theory
11R20 Other abelian and metabelian extensions

Software:

Mathematica

References:

[1] DOI: 10.1007/b80624 · Zbl 1019.11031 · doi:10.1007/b80624
[2] DOI: 10.2307/1968426 · Zbl 0009.24302 · doi:10.2307/1968426
[3] DOI: 10.1007/BF02952522 · JFM 53.0144.01 · doi:10.1007/BF02952522
[4] DOI: 10.1006/jsco.2000.0376 · Zbl 0989.12004 · doi:10.1006/jsco.2000.0376
[5] DOI: 10.1016/0021-8693(76)90222-2 · Zbl 0327.12101 · doi:10.1016/0021-8693(76)90222-2
[6] DOI: 10.1016/0022-314X(86)90038-7 · Zbl 0598.12009 · doi:10.1016/0022-314X(86)90038-7
[7] DOI: 10.1023/A:1000144403695 · Zbl 0905.12003 · doi:10.1023/A:1000144403695
[8] DOI: 10.1006/jnth.1996.0149 · Zbl 0876.11048 · doi:10.1006/jnth.1996.0149
[9] DOI: 10.1007/978-3-662-02945-9 · doi:10.1007/978-3-662-02945-9
[10] DOI: 10.1007/3-540-60114-7_13 · doi:10.1007/3-540-60114-7_13
[11] DOI: 10.1016/0021-8693(83)90087-X · Zbl 0521.12014 · doi:10.1016/0021-8693(83)90087-X
[12] DOI: 10.1016/S0021-8693(02)00678-6 · Zbl 1021.12004 · doi:10.1016/S0021-8693(02)00678-6
[13] DOI: 10.1006/jabr.1999.8260 · Zbl 0958.20011 · doi:10.1006/jabr.1999.8260
[14] DOI: 10.1006/jsco.2000.0377 · Zbl 0960.11054 · doi:10.1006/jsco.2000.0377
[15] DOI: 10.1007/BF01165834 · Zbl 0525.12019 · doi:10.1007/BF01165834
[16] DOI: 10.1007/3-540-51084-2_30 · doi:10.1007/3-540-51084-2_30
[17] DOI: 10.2748/tmj/1178207751 · Zbl 0993.11031 · doi:10.2748/tmj/1178207751
[18] DOI: 10.1090/S0025-5718-05-01750-3 · Zbl 1082.11069 · doi:10.1090/S0025-5718-05-01750-3
[19] DOI: 10.3836/tjm/1244208276 · Zbl 1081.12002 · doi:10.3836/tjm/1244208276
[20] DOI: 10.1090/S0025-5718-07-02094-7 · Zbl 1183.11069 · doi:10.1090/S0025-5718-07-02094-7
[21] DOI: 10.3792/pjaa.79.142 · Zbl 1047.12002 · doi:10.3792/pjaa.79.142
[22] DOI: 10.3792/pjaa.83.21 · Zbl 1126.14018 · doi:10.3792/pjaa.83.21
[23] A. Hoshi and K. Miyake, Number Theory and Applications (Hindustan Book Agency, New Delhi, 2009) pp. 65–104.
[24] Hoshi A., Comment. Math. Univ. St. Pauli 58 pp 51–
[25] DOI: 10.1007/978-3-642-64981-3 · Zbl 0217.07201 · doi:10.1007/978-3-642-64981-3
[26] Jensen C., Generic Polynomials, Constructive Aspects of the Inverse Galois Problem (2002)
[27] DOI: 10.1006/jsco.1999.0385 · Zbl 0974.12004 · doi:10.1006/jsco.1999.0385
[28] DOI: 10.1007/s002290170015 · Zbl 1023.12003 · doi:10.1007/s002290170015
[29] DOI: 10.1016/j.jalgebra.2005.06.035 · Zbl 1146.14304 · doi:10.1016/j.jalgebra.2005.06.035
[30] DOI: 10.1007/11792086_8 · doi:10.1007/11792086_8
[31] DOI: 10.1142/S1793042109002250 · Zbl 1204.12006 · doi:10.1142/S1793042109002250
[32] DOI: 10.1142/S1793042110003162 · Zbl 1285.11134 · doi:10.1142/S1793042110003162
[33] DOI: 10.5802/jtnb.334 · Zbl 1012.11096 · doi:10.5802/jtnb.334
[34] DOI: 10.1080/10586458.2002.10504684 · Zbl 1116.11325 · doi:10.1080/10586458.2002.10504684
[35] Komatsu T., Manuscripta Math. 114 pp 265–
[36] Lecacheux O., Acta Arith. 86 pp 207–
[37] DOI: 10.1090/S0025-5718-1988-0929551-0 · doi:10.1090/S0025-5718-1988-0929551-0
[38] DOI: 10.4064/aa110-4-6 · Zbl 1126.11321 · doi:10.4064/aa110-4-6
[39] DOI: 10.1090/S0025-5718-97-00831-4 · Zbl 0946.12002 · doi:10.1090/S0025-5718-97-00831-4
[40] Miyake K., Adv. Stud. Contemp. Math. (Pusan) 1 pp 137–
[41] DOI: 10.1016/S0377-0427(03)00624-1 · Zbl 1080.14520 · doi:10.1016/S0377-0427(03)00624-1
[42] Miyake K., Ann. Sci. Math. Québec 28 pp 165–
[43] DOI: 10.1007/0-387-30829-6_12 · Zbl 1202.11034 · doi:10.1007/0-387-30829-6_12
[44] DOI: 10.1006/jnth.1994.1089 · Zbl 0810.12003 · doi:10.1006/jnth.1994.1089
[45] DOI: 10.1080/10586458.1999.10504624 · Zbl 1002.12004 · doi:10.1080/10586458.1999.10504624
[46] DOI: 10.1016/S0747-7171(02)00012-3 · Zbl 1137.12302 · doi:10.1016/S0747-7171(02)00012-3
[47] DOI: 10.1007/978-1-4613-0249-0_9 · doi:10.1007/978-1-4613-0249-0_9
[48] DOI: 10.5802/jtnb.567 · Zbl 1119.11065 · doi:10.5802/jtnb.567
[49] DOI: 10.1016/0022-314X(85)90022-8 · Zbl 0579.12006 · doi:10.1016/0022-314X(85)90022-8
[50] DOI: 10.1090/S0025-5718-1973-0327712-4 · doi:10.1090/S0025-5718-1973-0327712-4
[51] DOI: 10.1007/3-540-60114-7_36 · doi:10.1007/3-540-60114-7_36
[52] Wolfram S., The Mathematica Book (2003)
[53] Yokoyama K., J. Pure Appl. Algebra 118 pp 617– · Zbl 1388.81898
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.