×

\(p\)-version least squares finite element formulation for axisymmetric incompressible non-Newtonian fluid flow. (English) Zbl 0846.76045

The paper presents a \(p\)-version least squares finite element formulation for axisymmetric incompressible non-Newtonian fluid flow. The dimensionless form of the equations describing the fluid motion in cast into a set of first order coupled partial differential equations involving non-Newtonian stresses as auxiliary variables. The pressure, velocities (primary variables) and the stresses (auxiliary variables) are interpolated using equal order, \(C^0\) continuous, \(p\)-version hierarchical approximation functions. The least squares functional (or error functional) is constructed using the system of coupled first order nonlinear partial differential equations (integrated sum of squares of the errors resulting from the individual equations for the entire discretization) without linearization, approximations or assumptions. The paper presents an implementation of the power law model for non-Newtonian viscosity.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Winterscheidt, D.; Surana, K. S., p-Version least squares finite element formulation for two dimensional incompressible fluid flow, Internat. J. Numer. Methods Fluids (1993), in press. · Zbl 0872.76058
[2] Hughes, T. J.R.; Liu, W. K.; Brooks, A., Finite element analysis of incompressible viscous flows by the penalty functional formulation, J. Comput. Phys., 30, 1-60 (1979) · Zbl 0412.76023
[3] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[4] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[5] Hughes, T. J.R.; Franca, L. P., A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65, 85-96 (1987) · Zbl 0635.76067
[6] Hirsch, C. H.; Warzee, G., A finite element method for the axisymmetric flow computation in a turbomachine, Internat. J. Numer. Methods Engrg., 10, 93-113 (1976) · Zbl 0324.76046
[7] Reddy, K. R.; Tanner, R. L., Finite element solution of viscous jet flows with surface tension, Comput. Fluids, 6, 83-91 (1978) · Zbl 0382.76030
[8] Omodei, Bernard J., On the die-swell of an axisymmetric Newtonian jet, Comput. & Fluids, 8, 275-289 (1980) · Zbl 0432.76033
[9] Bar-Yoseph, P.; Bleck, J. J.; Solan, A., Finite element solution of the Navier-Stokes equations in rotating flows, Internat. J. Numer. Methods Engrg., 17, 1123-1146 (1981) · Zbl 0471.76036
[10] Donea, J.; Giuliani, S.; Morgan, K., The significance of Chequerboarding in the Galerkin finite element solution of the Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 17, 790-795 (1981) · Zbl 0461.76018
[11] Carey, G. F.; Krishnan, R., Continuation techniques for a penalty approximation of the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 48, 265-282 (1985) · Zbl 0542.76039
[12] Lynn, P. P.; Arya, S. K., Use of the least squares criterion in the finite element formulation, Internat. J. Numer. Methods Engrg., 6, 75-88 (1973) · Zbl 0262.73075
[13] Lynn, P. P.; Arya, S. K., Finite elements formulated by the weighted discrete least squares method, Internat. J. Numer. Methods Engrg., 8, 71-90 (1974) · Zbl 0272.65103
[14] Zienkiewicz, O. C.; Owen, D. R.J., Least squares finite element for elasto-static problems, use of ‘reduced’ integration, Internat. J. Numer. Methods Engrg., 8, 341-358 (1974) · Zbl 0276.73040
[15] Lynn, P. P., Least squares finite element analysis of laminar boundary layer flows, Internat. J. Numer. Methods Engrg., 8, 865-876 (1974) · Zbl 0284.76029
[16] Eason, E. D.; Monte, C. D., Solution of non-linear boundary value problems by discrete least squares, Internat. J. Numer. Methods Engrg., 11, 641-652 (1977) · Zbl 0361.65091
[17] Powell, M. J.D., A method for minimizing a sum of squares of non-linear functions without calculating derivatives, Comput. J., 7, 303-307 (1965) · Zbl 0142.11601
[18] Polk, J. F.; Lynn, P. P., A least squares finite element approach to unsteady gas dynamics, Internat. J. Numer. Methods Engrg., 12, 3-10 (1978) · Zbl 0366.76048
[19] Fix, G. J.; Gunzburger, M. D., On least squares approximations to indefinite problems of the mixed type, Internat. J. Numer. Methods Engrg., 12, 453-469 (1978) · Zbl 0378.76046
[20] Fletcher, C. A.J., A primitive variable finite element formulation for inviscid, compressible flow, J. Comput. Phys., 33, 301-312 (1979) · Zbl 0418.76007
[21] Bristeau, M. O.; Pironneau, O.; Glowinski, R.; Periaux, J.; Perrier, P., On the numerical solution of non-linear problems in fluid dynamics by least squares and finite element methods (1) least squares formulation and conjugate gradient solution of the continuous problems, Comput. Methods Appl. Mech. Engrg., 17/18, 619-657 (1979) · Zbl 0423.76047
[22] Nguyen, H.; Reynen, J., A space-time least-squares finite element scheme for advection-diffusion equations, Comput. Methods Appl. Mech. Engrg., 42, 331-342 (1984) · Zbl 0517.76089
[23] Nguyen, H.; Reynen, J., A space-time finite element approach to Burgers’ equation, (Taylor, C.; Hinton, E.; Owen, D. R.J., Numerical Methods for Non-Linear Problems, Vol. 2 (1984), Pineridge Press: Pineridge Press Swansea, UK), 718-728 · Zbl 0574.76053
[24] Tabarrok, B.; Saghir, M. Ziad, A new mixed formulation for 2D incompressible flow, Comput. Methods Appl. Mech. Engrg., 43, 81-102 (1984) · Zbl 0584.76042
[25] Aziz, A. K.; Kellogg, R. B.; Stephens, A. B., Least squares method for elliptic systems, Math. Comp., 44, 53-70 (1985) · Zbl 0609.35034
[26] Jiang, B. N.; Carey, G. F., Adaptive refinement for least squares finite elements with element-by-element conjugate gradient solution, Internat. J. Numer. Methods Engrg., 24, 569-580 (1987) · Zbl 0624.65113
[27] Carey, G. F.; Jiang, B. N., Least squares finite element method and preconditioned conjugate gradient solution, Internat. J. Numer. Methods Engrg., 24, 1283-1296 (1987) · Zbl 0633.65111
[28] Carey, G. F.; Jiang, B.-N., Nonlinar preconditioned conjugate gradient and least-squares finite elements, Comput. Methods Appl. Mech. Engrg., 62, 145-154 (1987) · Zbl 0633.65112
[29] Jiang, B. N.; Carey, G. F., A stable least-squares finite element method for non-linear hyperbolic problems, Internat. J. Numer. Methods Fluids, 8, 933-942 (1988) · Zbl 0666.76087
[30] Kececioglu, I.; Rubinsky, B., A mixed-variable continuously deforming finite element method for parabolic evolution problems, Part I: The variational formulation for single evolution equation, Internat. J. Numer. Methods Engrg., 28, 2583-2607 (1989) · Zbl 0727.76076
[31] Kececioglu, I.; Rubinsky, B., A mixed-variable continuously deforming finite element method for parabolic evolution problems. Part II: The coupled problem of phase change in porous media, Internat. J. Numer. Methods Engrg., 28, 2609-2634 (1989) · Zbl 0727.76077
[32] Kececioglu, I.; Rubinsky, B., A mixed-variable continuously deforming finite element method for parabolic evolution problems. Part III: Numerical implementation and computational results, Internat. J. Numer. Methods Engrg., 28, 2715-2760 (1989) · Zbl 0744.76078
[33] Jiang, B.-N.; Chang, C.-L., Least-squares finite elements for the Stokes problem, Comput. Methods Appl. Mech. Engrg., 78, 297-311 (1990) · Zbl 0706.76033
[34] Jiang, B.-N.; Povinelli, L. A., Least-squares finite element method for fluid dynamics, Comput. Methods Appl. Mech. Engrg., 81, 13-37 (1990) · Zbl 0714.76058
[35] Babuška, I.; Zienkiewicz, O. C.; Gago, J.; de Al. Oliveira, E. R., Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), Wiley: Wiley New York · Zbl 0663.65001
[36] Jiang, B. N.; Sonnad, V., Least-squares solution of incompressible Navier-Stokes equations with the \(p\)-version of finite elements, NASA Technical Memorandum 105203, ICMP-91-14 (1991) · Zbl 0819.76045
[37] Winterscheidt, D.; Surana, K. S., \(p\)-Version least squares finite element formulation for convection-diffusion problems, Internat. J. Numer. Methods Engrg., 36, 111-133 (1993) · Zbl 0825.76436
[38] D. Winterscheidt and K.S. Surana, \(p\); D. Winterscheidt and K.S. Surana, \(p\) · Zbl 0797.76046
[39] B.C. Bell and K.S. Surana, \(p\); B.C. Bell and K.S. Surana, \(p\) · Zbl 0873.76041
[40] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena (1960), Wiley: Wiley New York
[41] Bird, R. B.; Armstrong, R. C.; Hassager, O., (Dynamics of Polymetric Liquids, Vol. 1 (1987), Wiley: Wiley New York)
[42] Hanks, R. W.; Larsen, K. M., Ind. Engrg. Chem., Fundam., 18, 33-35 (1979)
[43] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[44] Macagno, E. O.; Hung, T., Computational and experimental study of a captive annular eddy, J. Fluid Mech., 28, 43-64 (1967)
[45] Scott, P. S.; Mirza, F. A., A finite element analysis of laminar flows through planar and axisymmetric abrupt expansions, Comput. & Fluids, 14, 423-432 (1986)
[46] Napolitano, M.; Cinella, P., A numerical study of planar and axially-symmetric sudden expansion flows, Comput. & Fluids, 17, 185-193 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.