×

An energy-consistent discretization of hyper-viscoelastic contact models for soft tissues. (English) Zbl 1539.74253

Summary: In this work, we propose a mathematical model of hyper-viscoelastic problems applied to soft biological tissues, along with an energy-consistent numerical approximation. We first present the general problem in a dynamic regime, with certain types of dissipative constitutive assumptions. We then provide a numerical approximation of this problem, with the main objective of respecting energy consistency during contact in adequacy with the continuous framework. Given the presence of friction or viscosity, a dissipation of mechanical energy is expected. Moreover, we are interested in the numerical simulation of the non-smooth and non-linear problem considered, and more particularly in the optimization of Newton’s semi-smooth method and Primal Dual Active Set (PDAS) approaches. Finally, we test such numerical schemes on academic and real-life scenarios, the latter representing the contact deployment of a stainless-steel stent in an arterial tissue.

MSC:

74M15 Contact in solid mechanics
74L15 Biomechanical solid mechanics
Full Text: DOI

References:

[1] Hu, T.; Desai, J. P., Characterization of soft-tissue material properties: large deformation analysis, (Medical Simulation. Medical Simulation, Lecture Notes in Computer Science, vol. 3078, (2004), Springer: Springer Berlin), 28-37
[2] Nolan, D. R.; Gower, A. L.; Destrade, M.; Ogden, R. W.; McGarry, J. P., A robust anisotropic hyperelastic formulation for the modelling of soft tissue, J. Mech. Behav. Biomed. Mater., 39, 48-60, (2014)
[3] Pioletti, D. P.; Rakotomanana, L. R., Non-linear viscoelastic laws for soft biological tissues, Eur. J. Mech. A Solids, 19, 749-759, (2000) · Zbl 0984.74052
[4] Voyiadjis, G. Z.; Samadi-Dooki, A., Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation, J. Mech. Behav. Biomed. Mater., 83, 63-78, (2018)
[5] Upadhyay, K.; Subhash, G.; Spearot, D., Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials, J. Mech. Phys. Solids, 135, Article 103777 pp., (2020)
[6] Chagnon, G.; Rebouah, M.; Favier, D., Hyperelastic energy densities for soft biological tissues: A review, J. Elast. Springer Verlag, 120, 129-160, (2015) · Zbl 1432.74151
[7] Laursen, T. A., Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, (2003), Springer Science & Business Media
[8] Wriggers, P.; Zavarise, G., Computational contact mechanics, Encycl. Comput. Mech., (2004)
[9] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics, (2008), Springer Science & Business Media · Zbl 1173.74001
[10] Brogliato, B., Impacts in Mechanical Systems: Analysis and Modelling, (2000), Springer Science & Business Media
[11] Sofonea, M.; Matei, A., Mathematical Models in Contact Mechanics, Vol. 398, (2012), Cambridge University Press · Zbl 1255.49002
[12] Laursen, T. A.; Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 40, 5, 863-886, (1997) · Zbl 0886.73067
[13] Ayyad, Y.; Barboteu, M., Formulation and analysis of two energy-consistent methods for nonlinear elastodynamic frictional contact problems, J. Comput. Appl. Math., 228, 1, 254-269, (2009) · Zbl 1162.74048
[14] Gonzalez, O., Exact energy and momentum conserving algorithms for general models in non linear elasticity, Comput. Methods Appl. Mech. Engrg., 190, 1763-1783, (2000) · Zbl 1005.74075
[15] Laursen, T. A.; Love, G., Improved implicit integrators for transient impact problems: dynamic frictional dissipation within an admissible conserving framework, Comput. Methods Appl. Mech. Engrg., 192, 2223-2248, (2003) · Zbl 1119.74502
[16] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Engrg., 195, 37-40, 4890-4916, (2006) · Zbl 1177.74379
[17] Barboteu, M.; Danan, D.; Sofonea, M., A hyperelastic dynamic frictional contact model with energy-consistent properties, (Advances in Variational and Hemivariational Inequalities, (2015), Springer), 249-275 · Zbl 1317.74065
[18] Noels, L.; Stainier, L.; Ponthot, J. P., An energy momentum conserving algorithm for non-linear hypoelastic constitutive models, Internat. J. Numer. Methods Engrg., 59, 1, 83-114, (2004) · Zbl 1047.74063
[19] Conde Martín, S.; García Orden, J. C.; Romero, I., Energy-consistent time integration for nonlinear viscoelasticity, Comput. Mech., 54, 2, 473-488, (2014) · Zbl 1398.74368
[20] Betsch, P.; Janz, A.; Hesch, C., A mixed variational framework for the design of energy-momentum schemes inspired by the structure of polyconvex stored energy functions, Comput. Methods Appl. Mech. Engrg., 335, 660-696, (2018) · Zbl 1440.74065
[21] Franke, M.; Klein, D. K.; Weeger, O.; Betsch, P., Advanced discretization techniques for hyperelastic physics-augmented neural networks, Comput. Methods Appl. Mech. Engrg., 416, Article 116333 pp., (2023) · Zbl 1536.74252
[22] Moreau, J. J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 329-349, (1999) · Zbl 0968.70006
[23] Simo, J.; Tarnow, N., The discrete energy-momentum method. Part I: Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys., 43, 757-793, (1992) · Zbl 0758.73001
[24] Armero, F.; Romero, I., On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods, Comput. Methods Appl. Mech. Engrg., 190, 6783-6824, (2001) · Zbl 1068.74022
[25] Laursen, T. A.; Chawla, V., Design of energy-conserving algorithms for frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 40, 863-886, (1997) · Zbl 0886.73067
[26] Armero, F.; Petocz, E., Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems, Comput. Methods Appl. Mech. Engrg., 158, 269-300, (1998) · Zbl 0954.74055
[27] Acary, V., Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction, Comput. Methods Appl. Mech. Engrg., 256, 224-250, (2013) · Zbl 1352.74477
[28] Acary, V., Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact, ZAMM Z. Angew. Math. Mech., 96, 5, 585-603, (2016) · Zbl 07775048
[29] Betsch, P.; Hesch, C., Energy-momentum conserving schemes for frictionless dynamic contact problems, (Wriggers, Peter; Nackenhorst, Udo, IUTAM Symposium on Computational Methods in Contact Mechanics, (2007), Springer Netherlands: Springer Netherlands Dordrecht), 77-96 · Zbl 1208.74173
[30] Hesch, C.; Betsch, P., Transient 3d contact problems-NTS method: mixed methods and conserving integration, Comput. Mech., 48, 437-449, (2011) · Zbl 1352.74481
[31] Hesch, C.; Betsch, P., Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration, Comput. Mech., 48, 461-475, (2011) · Zbl 1398.74335
[32] Hesch, C.; Betsch, P., A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 77, 10, 1468-1500, (2009) · Zbl 1156.74378
[33] Agelet de Saracibar, C.; Di Capua, D., Conserving algorithms for frictionless and full stick friction dynamic contact problems using the direct elimination method, Internat. J. Numer. Methods Engrg., 113, 6, 910-937, (2018) · Zbl 07874735
[34] Puso, M. A., An energy and momentum conserving method for rigid-flexible body dynamics, Internat. J. Numer. Methods Engrg., 53, 6, 1393-1414, (2002) · Zbl 1112.74387
[35] Puso, M. A.; Laursen, T. A.; Solberg, J., A segment-to-segment mortar contact method for quadratic elements and large deformations, Comput. Methods Appl. Mech. Engrg., 197, 6-8, 555-566, (2008) · Zbl 1169.74627
[36] Haikal, G.; Hjelmstad, K. D., A finite element formulation of non-smooth contact based on oriented volumes for quadrilateral and hexahedral elements, Comput. Methods Appl. Mech. Engrg., 196, 45-48, 4690-4711, (2007) · Zbl 1173.74421
[37] Ayyad, Y.; Barboteu, M.; Fernández, J. R., A frictionless viscoelastodynamic contact problem with energy consistent properties: Numerical analysis and computational aspects, Comput. Methods Appl. Mech. Engrg., 198, 5-8, 669-679, (2009) · Zbl 1229.74108
[38] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, in: SIAM Studies in Applied Mathematics, vol. 8, Philadelphia, 1988. · Zbl 0685.73002
[39] Oden, J. T.; Kim, S. J., Interior penalty methods for finite element approximations of the signorini problem in elastostatics, Comput. Math. Appl., 8, 1, 35-56, (1986) · Zbl 0473.73077
[40] Martins, J. A.C.; Oden, J. T., Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal. Theory Methods Appl., 11, 407-428, (1987) · Zbl 0679.73050
[41] Barboteu, M.; Bonaldi, F.; Danan, D.; El Hadri, S., An improved normal compliance method for dynamic hyperelastic problems with energy conservation property, Commun. Nonlinear Sci. Numer. Simul., 123, Article 107296 pp., (2023) · Zbl 1524.74365
[42] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 3, 353-375, (1991) · Zbl 0825.76353
[43] de Saxcé, G.; Feng, Z.-Q., New inequality and functional for contact with friction: the implicit standard material approach, J. Struct. Mech., 19, 3, 301-325, (1991)
[44] Dumont, S., On enhanced descent algorithms for solving frictional multicontact problems: application to the discrete element method, Internat. J. Numer. Methods Engrg., 93, 11, 1170-1190, (2013) · Zbl 1352.74347
[45] Raous, M.; Chabrand, P.; Lebon, F., Numerical methods for solving unilateral contact problem with friction, J. Theoret. Appl. Mech., 7, 111-128, (1988) · Zbl 0679.73048
[46] Joli, P.; Feng, Z.-Q., Uzawa and newton algorithms to solve frictional contact problems within the bi-potential framework, Internat. J. Numer. Methods Engrg., 73, 3, 317-330, (2008) · Zbl 1159.74040
[47] Chouly, F., An adaptation of Nitsche’s method to the Tresca friction problem, J. Math. Anal. Appl., 411, 1, 329-339, (2014) · Zbl 1311.74112
[48] Chouly, F.; Hild, P.; Renard, Y., A nitsche finite element method for dynamic contact: 1. Space semi-discretization and time-marching schemes, ESAIM Math. Model. Numer. Anal., 49, 2, 481-502, (2015) · Zbl 1311.74113
[49] Chouly, F.; Fabre, M.; Hild, P.; Mlika, R.; Pousin, J.; Renard, Y., An overview of recent results on nitsche’s method for contact problems, (Geometrically Unfitted Finite Element Methods and Applications, (2017), Springer), 93-141 · Zbl 1390.74003
[50] Chouly, F.; Hild, P.; Renard, Y., (Finite Element Approximation of Contact and Friction in Elasticity. Finite Element Approximation of Contact and Friction in Elasticity, Advances in Mechanics and Mathematics, vol. 48, (2023), Springer International Publishing) · Zbl 1525.74001
[51] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 3, 865-888, (2002) · Zbl 1080.90074
[52] Hintermüller, M.; Kovtunenko, V. A.; Kunisch, K., Semismooth Newton Methods for a Class of Unilaterally Constrained Variational Problems, (2003), Universität Graz/Technische Universität Graz. SFB F003-Optimierung und Kontrolle
[53] Hüeber, S.; Wohlmuth, B., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 27-29, 3147-3166, (2005) · Zbl 1093.74056
[54] Hüeber, S.; Stadler, G.; Wohlmuth, B., A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput., 30, 2, 572-596, (2008) · Zbl 1158.74045
[55] Kunisch, K.; Stadler, G., Generalized Newton methods for the 2D-signorini contact problem with friction in function space, ESAIM Math. Model. Numer. Anal., 39, 4, 827-854, (2005) · Zbl 1330.74132
[56] Abide, S.; Barboteu, M.; Danan, D., Analysis of two active set type methods to solve unilateral contact problems, Appl. Math. Comput., 284, 286-307, (2016) · Zbl 1410.74048
[57] Abide, S.; Barboteu, M.; Cherkaoui, S.; Danan, D.; Dumont, S., Inexact primal-dual active set method for solving elastodynamic frictional contact problems, Comput. Math. Appl., 82, 36-59, (2021) · Zbl 1524.74364
[58] Abide, S.; Barboteu, M.; Cherkaoui, S.; Danan, D.; Dumont, S., A semi-smooth Newton and primal-dual active set method for non-smooth contact dynamics, Comput. Math. Appl., 387, Article 114153 pp., (2021) · Zbl 1507.70024
[59] Ciarlet, P. G., Mathematical Elasticity: Volume I: Three-Dimensional Elasticity, (1988), North-Holland · Zbl 0648.73014
[60] Le Tallec, P., Numerical methods for nonlinear three-dimensional elasticity, Handbook of Numerical Analysis, Vol. III, 449-463, (1994), North-Holland
[61] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, (Nonsmooth Mechanics and Applications, (1988), Springer), 1-82 · Zbl 0703.73070
[62] Desplanques, Y., Amontons-Coulomb friction laws, a review of the original manuscript, SAE Int. J. Mater. Manuf., 8, 1, 98-103, (2015)
[63] Jean, M., The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 235-257, (1999) · Zbl 0959.74046
[64] Pietrzak, G., Continuum Mechanics Modelling and Augmented Lagrangian Formulation of Large Deformation Frictional Contact Problems, 350, (1997), EPFL, I2S: EPFL, I2S Lausanne, (Ph.D. thesis)
[65] Pietrzak, G.; Curnier, A., Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 351-381, (1999) · Zbl 0991.74047
[66] Curnier, A., Méthodes numériques en mécanique des solides, (2001), Presses polytechniques et universitaires romandes
[67] Pioletti, D. P.; Rakotomanana, L. R.; Benvenuti, J. F.; Leyvraz, P. F., Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons, J. Biomech., 31, 8, 753-757, (1998)
[68] Hilber, H. M.; Hughes, T.; Taylor, R. L., Improved numerical disspation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 283-292, (1977)
[69] Hesch, C.; Betsch, P., Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration, Internat. J. Numer. Methods Engrg., 82, 3, 329-358, (2010) · Zbl 1188.74058
[70] Khenous, H. B.; Laborde, P.; Renard, Y., On the discretization of contact problems in elastodynamics, (Analysis and Simulation of Contact Problems, (2006), Springer), 31-38 · Zbl 1194.74417
[71] Ciarlet, P. G.; Geymonat, G., Sur les lois de comportement en élasticité non-linéaire compressible, C. R. Acad. Sci., 295, 423-426, (1982) · Zbl 0497.73017
[72] Kluth, G., Analyse mathématique et numérique de systèmes hyperélastiques et introduction de la plasticité, (2008), Laboratoire Jacques Louis Lions de l’Université Pierre et Marie Curie: Laboratoire Jacques Louis Lions de l’Université Pierre et Marie Curie Paris VI, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.