×

Energy-consistent time integration for nonlinear viscoelasticity. (English) Zbl 1398.74368

Summary: This paper is concerned with the numerical solution of the evolution equations of thermomechanical systems, in such a way that the scheme itself satisfies the laws of thermodynamics. Within this framework, we present a novel integration scheme for the dynamics of viscoelastic continuum bodies in isothermal conditions. This method intrinsically satisfies the laws of thermodynamics arising from the continuum, as well as the possible additional symmetries. The resulting solutions are physically accurate since they preserve the fundamental physical properties of the model. Furthermore, the method gives an excellent performance with respect to robustness and stability. Proof for these claims as well as numerical examples that illustrate the performance of the novel scheme are provided.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
74B20 Nonlinear elasticity
74F05 Thermal effects in solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics

References:

[1] Hairer E, Lubich C, Wanner G (2003) Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer series in computational mathematics. Springer, Berlin · Zbl 1228.65237
[2] Leimkuhler B, Reich S (2005) Simulating Hamiltonian dynamics. Cambridge monographs on applied and computational mathematics. Cambridge University Press. http://books.google.es/books?id=tpb-tnsZi5YC · Zbl 0758.73001
[3] Simó JC, Tarnow N (1992) The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z Angew Math Phys (ZAMP) 43(5):757-792 · Zbl 0758.73001 · doi:10.1007/BF00913408
[4] Gónzalez O (1996) Design and analysis of conserving integrators for nonlinear Hamiltonian systems with symmetry. Ph.D. thesis, Stanford
[5] Gotusso L (1985) On the energy theorem for the Lagrange equations in the discrete case. Appl Math Comput 17(2):129-136 · Zbl 0573.70015
[6] Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational difference quotients. J Comput Phys 76(1):85-102 (1988). doi: 10.1016/0021-9991(88)90132-5. http://www.sciencedirect.com/science/article/pii/0021999188901325 · Zbl 0656.70015
[7] McLachlan RI, Quispel GRW, Robidoux N (1999) Geometric integration using discrete gradients. Philos Trans Math Phys Eng Sci 357(1754):1021-1045 · Zbl 0933.65143 · doi:10.1098/rsta.1999.0363
[8] Stuart A, Humphries AR (1998) Dynamical systems and numerical analysis. No. v. 8 in Cambridge monographs on applied and computational mathematics. Cambridge University Press. http://books.google.es/books?id=ymoQA8s5pNIC · Zbl 0764.73073
[9] Ortiz M, Repetto EA, Stainier L (2000) A theory of subgrain dislocation structures. 48. doi:10.1016/S0022-5096(99)00104-0. http://linkinghub.elsevier.com/retrieve/pii/S0022509699001040 · Zbl 1001.74007
[10] Groß M, Betsch P (2010) Energy-momentum consistent finite element discretization of dynamic finite viscoelasticity. Int J Numer Methods Eng 81(September 2009):1341-1386. doi:10.1002/nme · Zbl 1183.74280 · doi:10.1002/nme
[11] Meng X (2002) On energy consistency of large deformation plasticity models, with application to the design of unconditionally stable time integrators. Finite Elem Anal Des 38(10):949-963. doi:10.1016/S0168-874X(02)00087-2 · Zbl 1008.74077 · doi:10.1016/S0168-874X(02)00087-2
[12] Meng XN, Laursen TA (2002) Energy consistent algorithms for dynamic finite deformation plasticity. Comput Methods Appl Mech Eng 191(15-16):1639-1675 (2002). doi:10.1016/S0045-7825(01)00349-8. http://linkinghub.elsevier.com/retrieve/pii/S0045782501003498 · Zbl 1141.74373
[13] Armero F, Zambrana-Rojas C (2007) Volume-preserving energy momentum schemes for isochoric multiplicative plasticity. Comput Methods Appl Mech Eng 196(41-44):4130-4159. doi:10.1016/j.cma.2007.04.002 · Zbl 1173.74395 · doi:10.1016/j.cma.2007.04.002
[14] Öttinger (2005) Beyond equilibrium thermodynamics. Wiley, New Jersey · doi:10.1002/0471727903
[15] Romero I (2009) Thermodynamically consistent time-stepping algorithms for non-linear thermomechanical systems. Int J Numer Methods Eng 79:706-732. doi:10.1002/nme · Zbl 1171.80305 · doi:10.1002/nme
[16] Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamicsPart II: fractional step methods. Comput Methods Appl Mech Eng 199(33-36):2235-2248. doi:10.1016/j.cma.2010.03.016 · Zbl 1231.74472 · doi:10.1016/j.cma.2010.03.016
[17] Romero I (2010) Algorithms for coupled problems that preserve symmetries and the laws of thermodynamics. Part I: monolithic integrators and their application to finite strain thermoelasticity. Comput Methods Appl Mech Eng 199(25-28):1841-1858. doi:10.1016/j.cma.2010.02.014 · Zbl 1231.74471 · doi:10.1016/j.cma.2010.02.014
[18] García Orden JC, Romero I (2011) Energy-Entropy-Momentum integration of discrete thermo-visco-elastic dynamics. Eur J Mech A/Solids 32:76-87. doi:10.1016/j.euromechsol.2011.09.007. http://linkinghub.elsevier.com/retrieve/pii/S0997753811001392 · Zbl 1278.74166
[19] Krüger M, Groß M, Betsch P (2011) A comparison of structure-preserving integrators for discrete thermoelastic systems. Comput Mech 47(6):701-722. doi:10.1007/s00466-011-0570-0 · Zbl 1398.74350
[20] Coleman B, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47(2):597. doi:10.1063/1.1711937 · Zbl 1173.74395
[21] Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38(17):2953-2968. doi:10.1016/S0020-7683(00)00215-8 · Zbl 1058.74027 · doi:10.1016/S0020-7683(00)00215-8
[22] Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(97):3455-3482 · Zbl 0918.73028
[23] Holzapfel GA, Simó JC (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33(20):3019-3034 · Zbl 0909.73038 · doi:10.1016/0020-7683(95)00263-4
[24] Truesdell C, Noll W, Antman SS (2004) The non-linear field theories of mechanics. No. v. 3 in the non-linear field theories of mechanics. Springer. http://books.google.es/books?id=dp84F_odrBQC · Zbl 0920.73064
[25] Govindjee S, Simó JC (1992) Mullins’ effect and the strain amplitude dependence of the storage modulus. Solids Struct 29:1737-1751 · Zbl 0764.73073 · doi:10.1016/0020-7683(92)90167-R
[26] Bonet J, Wood Richard D (2008) Nonlinear continuum mechanics for finite element analysis. University Press, Cambrigde, Swasea · Zbl 1142.74002 · doi:10.1017/CBO9780511755446
[27] Malvern L (1969) Introduction to the mechanics of a continuous medium. Incorporated, Prentice-Hall International, Englewood Cliffs, NJ · Zbl 0181.53303
[28] Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications 190:4379-4403
[29] Holzapfel GA (2000) Nonlinear solid mechanics—a continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[30] Hutter K (1977) The foundations of thermodynamics, its basic postulates and implications. A review of modern thermodynamics. Acta Mech 27(1):1-54. doi:10.1007/BF01180075. http://dx.doi.org/10.1007/BF01180075
[31] Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis, vol 682. Dover Publications. http://books.google.com/books?id=yarmSc7ULRsC · Zbl 0933.65143
[32] Romero I (2012) An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics. Comput Mech 50(5):603-610. doi:10.1007/s00466-012-0693-y · Zbl 1312.74006 · doi:10.1007/s00466-012-0693-y
[33] Holzapfel GA (1996) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Numer Methods Eng 39(December 1995):3903-3926 · Zbl 0920.73064 · doi:10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
[34] Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq Eng Struct Dyn 5(3):283-292. doi:10.1002/eqe.4290050306 · doi:10.1002/eqe.4290050306
[35] Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge, MA · Zbl 1033.65001 · doi:10.1017/CBO9780511801181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.