×

From Madhava-Leibniz to Lehmer’s limit. (English) Zbl 1503.40003

The authors offer a new insight into a family of infinite series originally studied by D. H. Lehmer [Am. Math. Mon. 92, 449–457 (1985; Zbl 0645.05008)] and further studied by F. J. Dyson et al. [Am. Math. Mon. 120, No. 2, 116–130 (2013; Zbl 1310.11122)]. Here the authors show that phenomena discussed by Lehmer derive from simple transformations of the well-known Madhava-Leibniz series for \(\frac{\pi}{4}\).

MSC:

40A25 Approximation to limiting values (summation of series, etc.)
40A30 Convergence and divergence of series and sequences of functions
11B65 Binomial coefficients; factorials; \(q\)-identities

Software:

OEIS
Full Text: DOI

References:

[1] Ablinger, J., Discovering and proving infinite binomial sums identities, Exp. Math, 26, 1, 62-71 (2016) · Zbl 1365.05009
[2] Ablinger, J., Discovering and proving infinite Pochhammer sum identities, Exp. Math. (2019) · Zbl 1486.05024 · doi:10.1080/10586458.2019.1627254
[3] Apéry, R., Irrationalité de \(####\) et, Astérique, 61, 11-13 (1979) · Zbl 0401.10049
[4] Borwein, J. M.; Broadhurst, D.; Kamnitzer, J., Central binomial sums, multiple Clausen values, and zeta values, Exp. Math, 10, 1, 25-34 (2001) · Zbl 0998.11045
[5] Borwein, J. M.; Girgensohn, R., Evaluations of binomial series, Aequationes Math, 70, 1-2, 25-36 (2005) · Zbl 1078.05003 · doi:10.1007/s00010-005-2774-x
[6] Brillhart, J., Derrick Henry Lehmer, Acta Arith., 62, 3, 207-220 (1992) · Zbl 0774.11003 · doi:10.4064/aa-62-3-207-220
[7] Broder, A., The r-Stirling numbers, Discrete Math, 49, 3, 241-259 (1984) · Zbl 0535.05006 · doi:10.1016/0012-365X(84)90161-4
[8] Callan, D., Klazar trees and perfect matchings, Eur. J. Combin, 31, 5, 1265-1282 (2010) · Zbl 1231.05071 · doi:10.1016/j.ejc.2009.11.004
[9] Candelpergher, B.; Coppo, M.-A., Le produit harmonique des suites, Enseign. Math. (2), 59, 1-2, 39-72 (2013) · Zbl 1304.40006
[10] Carlitz, L., Weighted Stirling numbers of the first and second kind. I, Fibonacci Quart, 18, 2, 147-162 (1980) · Zbl 0428.05003
[11] Chen, H., Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Seq, 19, 1, 11 (2016) · Zbl 1364.11061
[12] Coppo, M.-A.; Candelpergher, B., Inverse binomial series and values of Arakawa-Kaneko zeta functions, J. Number Theory, 150, 98-119 (2015) · Zbl 1308.11076 · doi:10.1016/j.jnt.2014.11.007
[13] Crane, H., Left-right arrangements, set partitions and pattern avoidance, Australasian J. Comb, 61, 1, 57-72 (2015) · Zbl 1309.05024
[14] Cuyt, A.; Brevik Petersen, V.; Verdonk, B.; Waadeland, H.; Jones, W. B., Handbook of Continued Fractions for Special Functions (2008), Dordrecht: Springer, Dordrecht · Zbl 1150.30003
[15] Davydychev, A. I.; Kalmykov, M. Y., New results for the ε -expansion of certain one-, two-, and three-loop Feynman diagrams, Nuclear Phys. B, 605, 1-3, 266-318 (2001) · Zbl 0969.81598
[16] Davydychev, A. I.; Kalmykov, M. Y., Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B, 699, 1-2, 3-64 (2004) · Zbl 1123.81388
[17] Drummond, J. E., Convergence speeding, convergence and summability, J. Comp. Appl. Math, 11, 2, 145-159 (1984) · Zbl 0559.65002
[18] Dyson, F.; Frankel, N. E.; Glasser, M. L., Lehmer’s interesting series, Amer. Math. Monthly, 120, 2, 116-130 (2013) · Zbl 1310.11122
[19] Fisk, S., Polynomials, roots, and interlacing, arxiv.org/abs/math/0612833v2 (2008)
[20] Glasser, M. L., A generalized Apéry series, J. Integer Seq, 15, 4, 7 (2012) · Zbl 1291.11048
[21] Johnson, C. R., Interlacing polynomials, Proc. Amer. Math. Soc, 100, 3, 401-404 (1987) · Zbl 0622.15018
[22] Kalmykov, M. Y.; Veretin, O., Single-scale diagrams and multiple binomial sums, Phys. Lett. B, 483, 1-3, 315-323 (2000) · Zbl 1031.81568
[23] Klazar, M., Twelve countings with rooted plane trees, Eur. J. Combin, 18, 2, 195-210 (1997) · Zbl 0868.05017 · doi:10.1006/eujc.1995.0095
[24] Lehmer, D. H., Interesting series involving the central binomial coefficient, Amer. Math. Monthly, 92, 7, 449-457 (1985) · Zbl 0645.05008 · doi:10.1080/00029890.1985.11971651
[25] Mattarei, S.; Tauraso, R., From generating series to polynomial congruences, J. Number Theory, 182, 179-205 (2018) · Zbl 1423.11016 · doi:10.1016/j.jnt.2017.06.007
[26] OEIS Foundation, Inc, The On-Line Encyclopedia of Integer Sequences (2020), oeis.org
[27] Rahmani, M., Generalized Stirling transform, Miskolc Math. Notes, 15, 2, 677-690 (2014) · Zbl 1324.11024
[28] Ren, Q., Ordered partitions and drawings of rooted plane trees, Discrete Math, 338, 1, 1-9 (2015) · Zbl 1301.05270
[29] Roy, R., The discovery of the series formula for π by Leibniz, Gregory and Nilakantha, Math. Mag, 63, 5, 291-306 (1990) · Zbl 0727.01007
[30] Schikhof, W. H., Ultrametric Calculus. An Introduction to p-Adic Analysis (1984), London: Cambridge Univ. Press, London · Zbl 0553.26006
[31] Sidi, A., Practical Extrapolation Methods (2003), London: Cambridge Univ. Press, London · Zbl 1041.65001
[32] Tweddle, I., James Stirling’s Methodus Differentialis: An Annotated Translation of Stirling’s Text (2003), London: Springer-Verlag, London · Zbl 1031.01008
[33] Uhl, M., Recurrence equation and integral representation of Apéry sums, European J. Math, 7, 793-806 (2020) · Zbl 1479.11143 · doi:10.1007/s40879-020-00415-y
[34] van der Poorten, A. J., A proof that Euler missed…Apéry’s proof of the irrationality of, Math. Intelligencer, 1, 4, 195-203 (1979) · Zbl 0409.10028
[35] Weinzierl, S., Expansion around half-integer values, binomial sums, and inverse binomial sums, J. Math. Phys, 45, 7, 2656-2673 (2004) · Zbl 1071.33018
[36] Weniger, E. J., Summation of divergent power series by means of factorial series, Appl. Numer. Math, 60, 12, 1429-1441 (2010) · Zbl 1209.40001
[37] Young, P. T., The p-adic Arakawa-Kaneko zeta functions and p-adic Lerch transcendent, J. Number Theory, 155, 13-35 (2015) · Zbl 1320.11086 · doi:10.1016/j.jnt.2015.01.022
[38] Young, P. T., Polylogarithmic zeta functions and their p-adic analogues, Int. J. Number Theory, 13, 10, 2751-2768 (2017) · Zbl 1428.11159 · doi:10.1142/S1793042117501512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.