×

Closed form expressions for Appell polynomials. (English) Zbl 1459.11055

Summary: We show that any Appell sequence can be written in closed form as a forward difference transformation of the identity. Such transformations are actually multipliers in the abelian group of the Appell polynomials endowed with the operation of binomial convolution. As a consequence, we obtain explicit expressions for higher order convolution identities referring to various kinds of Appell polynomials in terms of the Stirling numbers. Applications of the preceding results to generalized Bernoulli and Apostol-Euler polynomials of real order are discussed in detail.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
60E05 Probability distributions: general theory

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992) · Zbl 0171.38503
[2] Adell, J.A., Lekuona, A.: Explicit expressions for a certain class of Apell polynomials. A probabilistic approach. Submitted. arXiv:1711.02603v1 [math.NT] · Zbl 1476.11036
[3] Adell, J.A., Lekuona, A.: Binomial convolution and transformations of Appell polynomials. J. Math. Anal. Appl. 456(1), 16-33 (2017). https://doi.org/10.1016/j.jmaa.2017.06.077. · Zbl 1371.33026 · doi:10.1016/j.jmaa.2017.06.077.
[4] Adell, J.A., Lekuona, A.: Closed form expressions for the Stirling numbers of the first kind. Integers 17, Paper No. A26, 4 (2017) · Zbl 1412.11050
[5] Agoh, T., Dilcher, K.: Higher-order convolutions for Bernoulli and Euler polynomials. J. Math. Anal. Appl. 419(2), 1235-1247 (2014). https://doi.org/10.1016/j.jmaa.2014.05.050. · Zbl 1293.11032 · doi:10.1016/j.jmaa.2014.05.050.
[6] Boutiche, M.A., Rahmani, M., Srivastava, H.M.: Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials. Mediterr. J. Math. 14(2), Art. 89, 10 (2017). https://doi.org/10.1007/s00009-017-0891-0 · Zbl 1402.11034
[7] Comtet, L.: Advanced Combinatorics, enlarged edn. D. Reidel Publishing Co., Dordrecht (1974). The art of finite and infinite expansions · Zbl 0283.05001
[8] Dilcher, K.: Sums of products of Bernoulli numbers. J. Number Theory 60(1), 23-41 (1996). https://doi.org/10.1006/jnth.1996.0110 · Zbl 0863.11011 · doi:10.1006/jnth.1996.0110
[9] Dilcher, K., Vignat, C.: General convolution identities for Bernoulli and Euler polynomials. J. Math. Anal. Appl. 435(2), 1478-1498 (2016). https://doi.org/10.1016/j.jmaa.2015.11.006 · Zbl 1400.11063 · doi:10.1016/j.jmaa.2015.11.006
[10] Guo, B.N., Qi, F.: Some identities and an explicit formula for Bernoulli and Stirling numbers. J. Comput. Appl. Math. 255, 568-579 (2014). https://doi.org/10.1016/j.cam.2013.06.020 · Zbl 1291.11051 · doi:10.1016/j.cam.2013.06.020
[11] He, Y.: Summation formulae of products of the Apostol-Bernoulli and Apostol-Euler polynomials. Ramanujan J. 43(2), 447-464 (2017). https://doi.org/10.1007/s11139-017-9899-0 · Zbl 1373.11019 · doi:10.1007/s11139-017-9899-0
[12] He, Y., Araci, S.: Sums of products of Apostol-Bernoulli and Apostol-Euler polynomials. Adv. Differ. Equ. 2014, 155 (2014). https://doi.org/10.1186/1687-1847-2014-155 · Zbl 1343.11030 · doi:10.1186/1687-1847-2014-155
[13] Kim, D.S., Kim, T., Dolgy, D.Y., Rim, S.H.: Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus. Adv. Differ. Equ. 2013, 73 (2013). https://doi.org/10.1186/1687-1847-2013-73 · Zbl 1380.05005 · doi:10.1186/1687-1847-2013-73
[14] Kim, D.S., Kim, T., Lee, S.H., Seo, J.J.: Higher-order Daehee numbers and polynomials. Int. J. Math. Anal. (Ruse) 8(5-8), 273-283 (2014). https://doi.org/10.12988/ijma.2014.4118 · doi:10.12988/ijma.2014.4118
[15] Luo, Q.M.: Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math 10(4), 917-925 (2006). https://doi.org/10.11650/twjm/1500403883 · Zbl 1189.11011 · doi:10.11650/twjm/1500403883
[16] Luo, Q.M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308(1), 290-302 (2005). https://doi.org/10.1016/j.jmaa.2005.01.020. · Zbl 1076.33006 · doi:10.1016/j.jmaa.2005.01.020.
[17] Nörlund, N.E.: Mémoire sur les polynomes de Bernoulli. Acta Math. 43(1), 121-196 (1922). https://doi.org/10.1007/BF02401755. · JFM 47.0216.05 · doi:10.1007/BF02401755.
[18] Roman, S.: The Umbral Calculus. Pure and Applied Mathematics, vol. 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York (1984) · Zbl 0536.33001
[19] Srivastava, H.M., Todorov, P.G.: An explicit formula for the generalized Bernoulli polynomials. J. Math. Anal. Appl. 130(2), 509-513 (1988). https://doi.org/10.1016/0022-247X(88)90326-5. · Zbl 0621.33008 · doi:10.1016/0022-247X(88)90326-5.
[20] Sun, P.: Product of uniform distribution and Stirling numbers of the first kind. Acta Math. Sin. (Engl. Ser.) 21(6), 1435-1442 (2005). https://doi.org/10.1007/s10114-005-0631-4 · Zbl 1109.11016 · doi:10.1007/s10114-005-0631-4
[21] Todorov, P.G.: Une formule simple explicite des nombres de Bernoulli généralisés. C. R. Acad. Sci. Paris Sér. I Math. 301(13), 665-666 (1985) · Zbl 0606.10008
[22] Wang, W.: Some results on sums of products of Bernoulli polynomials and Euler polynomials. Ramanujan J. 32(2), 159-184 (2013). https://doi.org/10.1007/s11139-012-9447-x. · Zbl 1277.05007 · doi:10.1007/s11139-012-9447-x.
[23] Wu, M., Pan, H.: Sums of products of the degenerate Euler numbers. Adv. Differ. Equ. 2014, 40 (2014). https://doi.org/10.1186/1687-1847-2014-40 · Zbl 1343.11033 · doi:10.1186/1687-1847-2014-40
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.