×

Explicit expressions for a certain subset of Appell polynomials: a probabilistic perspective. (English) Zbl 1476.11036

Summary: We consider the subset \(\mathcal E\) of Appell polynomials whose generating function is given in terms of a real power of the moment generating function of a certain random variable \(Y\). This subset contains different kinds of generalizations of the Bernoulli, Apostol-Euler, Cauchy-type, Hermite, and Miller-Lee polynomials, among others. We give a unified approach to obtain explicit expressions for those Appell sequences in \(\mathcal{E}\). The main tool is a suitable probabilistic generalization of the Stirling numbers of the second kind.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11B73 Bell and Stirling numbers
60E05 Probability distributions: general theory
60E10 Characteristic functions; other transforms

References:

[1] J. A. Adell, J. Bustamante, and J. M. Quesada, Estimates for the moments of Bernstein polynomials, J. Math. Anal. Appl. 432 (2015), no. 1, 114-128. · Zbl 1351.41002
[2] J. A. Adell and A. Lekuona, Closed form expressions for the Stirling numbers of the first kind, Integers 17 (2017), #A26, 4pp. · Zbl 1412.11050
[3] J. A. Adell and A. Lekuona, Binomial convolution and transformations of Appell polynomials, J. Math. Anal. Appl. 456 (2017), no. 1, 16-33. · Zbl 1371.33026
[4] J. A. Adell and A. Lekuona, A probabilistic generalization of the Stirling numbers of the second kind, J. Number Theory 194 (2019), 335-355. · Zbl 1437.11037
[5] G. Bretti, P. Natalini, and P. E. Ricci, Generalizations of the Bernoulli and Appell polynomials, Abstr. Appl. Anal. 7 (2004), 613-623. · Zbl 1072.33005
[6] G. Dattoli, S. Lorenzutta, and D. Sacchetti, Integral representations of new families of poly-nomials, Ital. J. Pure Appl. Math. 15 (2004), 19-28. · Zbl 1187.33014
[7] B. S. El-Desouky, N. P. Cakić, and F. A. Shiha, New family of Whitney numbers, Filomat 31 (2017), no. 2, 309-320. · Zbl 1488.05023
[8] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Pub-lishing Company, Advanced Book Program, Reading, MA, 1989. · Zbl 0668.00003
[9] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling num-bers, J. Comput. Appl. Math. 255 (2014), 568-579. · Zbl 1291.11051
[10] S. Khan and M. Riyasat, A determinantal approach to Sheffer-Appell polynomials via mono-miality principle, J. Math. Anal. Appl. 421 (2015), no. 1, 806-829. · Zbl 1310.33012
[11] D. S. Kim, T. Kim, D. V. Dolgy, and S.-H. Rim, Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus, Adv. Difference Equ. (2013), 2013:73, 11. · Zbl 1380.05005
[12] T.Komatsu and J. L. Ramírez, Incomplete poly-Bernoulli numbers and incomplete poly-Cauchy numbers associated to the q-Hurwitz-Lerch zeta function, Mediterr. J. Math. 14 (2017), no. 3, Article 133, 19pp. · Zbl 1427.11022
[13] Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric func-tions, Taiwanese J. Math. 10 2006, no. 4, 917-925. · Zbl 1189.11011
[14] Q.-M. Luo and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308 (2005), no. 1, 290-302. · Zbl 1076.33006
[15] D. Merlini, R. Sprugnoli, and M. C. Verri, The Cauchy numbers, Discrete Math. 306, no. 16, 1906-1920. · Zbl 1098.05008
[16] I. Mező, A new formula for the Bernoulli polynomials, Results Math. 58 (2010), no. 3-4, 329-335. · Zbl 1237.11010
[17] H. M. Srivastava and P. G.Todorov, An explicit formula for the generalized Bernoulli poly-nomials, J. Math. Anal. Appl. 130 (1988), no. 2, 509-513. · Zbl 0621.33008
[18] P. Sun, Product of uniform distribution and Stirling numbers of the first kind, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1435-1442. · Zbl 1109.11016
[19] B. Q. Ta, Probabilistic approach to Appell polynomials, Expo. Math. 33 (2015), no.3, 269-294. · Zbl 1343.11032
[20] P. Tempesta, On Appell sequences of polynomials of Bernoulli and Euler type, J. Math. Anal. Appl. 341 (2008), no. 2, 1295-1310. · Zbl 1176.11007
[21] P. G. Todorov, Une formule simple explicite des nombres de Bernoulli généralisés, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no.13, 665-666. · Zbl 0606.10008
[22] W. Wang, Generalized higher order Bernoulli number pairs and generalized Stirling number pairs, J. Math. Anal. Appl. 364 (2010), no. 1, 255-274. · Zbl 1221.11061
[23] W. Wang, C. Jia, and T. Wang, Some results on the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 55 (2008), no. 6, 1322-1332. · Zbl 1151.11012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.