×

An unconditionally convergent RSCSCS iteration method for Riesz space fractional diffusion equations with variable coefficients. (English) Zbl 1540.65327

Summary: In this paper, a respectively scaled circulant and skew-circulant splitting (RSCSCS) iteration method is employed to solve the Toeplitz-like linear systems arising from time-dependent Riesz space fractional diffusion equations with variable coefficients. The RSCSCS iteration method is shown to be convergent unconditionally by a novel technique, and only requires computational costs of \(\mathcal{O} (N \log N)\) with \(N\) denoting the number of interior mesh points in space. In theory, we obtain an upper bound for the convergence factor of the RSCSCS iteration method and discuss the optimal value of its iteration parameter that minimizes the corresponding upper bound. Meanwhile, we also design a fast induced RSCSCS preconditioner to accelerate the convergence rate of the Krylov subspace iteration method likes generalized minimal residual (GMRES) method. Numerical results are presented to show that the efficiencies of our proposed RSCSCS iteration method and the preconditioned GMRES method with the RSCSCS preconditioner.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Bai, Z. Z., Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations, Numer. Linear Algebra Appl., 25, Article e2157 pp. (2018) · Zbl 1524.65126
[2] Bai, J.; Feng, X. C., Fractional-order anisotropic diffusion for image denoising, IEEE Tran. Image Proc., 16, 10, 2492-2502 (2007) · Zbl 1119.76377
[3] Bai, Z. Z.; Lu, K. Y.; Pan, J. Y., Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, Numer. Linear Algebra with Appl., 24, Article e2093 pp. (2017) · Zbl 1463.65040
[4] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 6, 1413-1423 (2000)
[5] Bu, W.; Tang, Y.; Yang, J., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276, 26-38 (2014) · Zbl 1349.65441
[6] Carreras, B. A.; Lynch, V. E.; Zaslavsky, G. M., Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8, 12, 5096-5103 (2001)
[7] Chan, R. H.; Ng, M. K., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 3, 427-482 (1996) · Zbl 0863.65013
[8] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phys., 307, 262-279 (2016) · Zbl 1352.65305
[9] Donatelli, M.; Mazza, M.; Serra-Capizzano, S., Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations, SIAM J. Sci. Comput., 40, 6, A4007-A4039 (2018) · Zbl 1405.65161
[10] Fu, H.; Sun, Y.; Wang, H.; Zheng, X., Stability and convergence of a Crank-Nicolson finite volume method for space fractional diffusion equations, Appl. Numer. Math., 139, 38-51 (2019) · Zbl 1411.65120
[11] Huckle, T., Computations with Gohberg-Semencul-type formulas for Toeplitz matrices, Linear Algebra Appl., 273, 1, 169-198 (1998) · Zbl 0891.65024
[12] Jin, X. Q., Preconditioning Techniques for Toeplitz Systems (2010), Higher Education Press: Higher Education Press Beijing
[13] Lei, S. L.; Sun, H. W., A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725 (2013) · Zbl 1297.65095
[14] Lin, X. L.; Ng, M. K.; Sun, H. W., A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations, SIAM J. Matrix Anal. Appl., 38, 4, 1580-1614 (2017) · Zbl 1381.65030
[15] Lu, K. Y., Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations, J. Comput. Appl. Math., 37, 4, 4196-4218 (2018) · Zbl 1402.65018
[16] Lu, X.; Fang, Z. W.; Sun, H. W., Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations, J. Appl. Math. Comput., 66, 1, 673-700 (2021) · Zbl 1475.65015
[17] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346
[18] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56, 1, 80-90 (2006) · Zbl 1086.65087
[19] Ng, M. K., Circulant and skew-circulant splitting methods for Toeplitz systems, J. Comput. Appl. Math., 159, 1, 101-108 (2003) · Zbl 1033.65014
[20] Pan, J. Y.; Ke, R. H.; Ng, M. K.; Sun, H. W., Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36, 6, A2698-A2719 (2014) · Zbl 1314.65112
[21] Pang, H. K.; Sun, H. W., Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 2, 693-703 (2012) · Zbl 1243.65117
[22] Qu, W.; Lei, S. L., On CSCS-based iteration method for tempered fractional diffusion equations, Jpn. J. Ind. Appl. Math., 33, 3, 583-597 (2016) · Zbl 1373.65058
[23] Qu, W.; Lei, S. L.; Vong, S. W., Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations, Int. J. Comput. Math., 91, 10, 2232-2242 (2014) · Zbl 1303.26010
[24] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 1-4, 749-755 (2002) · Zbl 1001.91033
[25] Shao, X.; Zhang, Z.; Shen, H., A generalization of trigonometric transform splitting methods for spatial fractional diffusion equations, Comput. Math. Appl., 79, 6, 1845-1856 (2020) · Zbl 1443.65140
[26] She, Z. H.; Lao, C. X.; Yang, H.; Lin, F. R., Banded preconditioners for Riesz space fractional diffusion equations, J. Sci. Comput., 86, 3, 1-22 (2021) · Zbl 1475.65079
[27] Sokolov, I. M.; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today, 55, 11, 48-54 (2002)
[28] Tadjeran, C.; Meerschaert, M. M.; Sheffler, H. P., A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213, 1, 205-213 (2006) · Zbl 1089.65089
[29] Tian, W. Y.; Zhou, H.; Deng, W. H., A class of second order difference approximations for solving space fractional diffusion equations, Math. Comp., 84, 294, 1703-1727 (2015) · Zbl 1318.65058
[30] Wang, H.; Wang, K. X.; Sircar, T., A direct \(\mathcal{O} ( N \log^2 N )\) finite difference method for fractional diffusion equations, J. Comput. Phys., 229, 21, 8095-8104 (2010) · Zbl 1198.65176
[31] Zeng, M. L.; Zhang, G. F., Scaled diagonal-times-Toeplitz splitting iteration methods for solving discretized spatial fractional diffusion equations, Math. Methods Appl. Sci., 44, 4, 3225-3242 (2021) · Zbl 1490.65150
[32] Zhang, L.; Sun, H. W.; Pang, H. K., Fast numerical solution for fractional diffusion equations by exponential quadrature rule, J. Comput. Phys., 299, 130-143 (2015) · Zbl 1352.65304
[33] Zhao, Y.; Bu, W.; Huang, J.; Liu, D.-Y.; Tang, Y., Finite element method for two-dimensional space-fractional advection-dispersion equations, Appl. Math. Comput., 257, 553-565 (2015) · Zbl 1339.65185
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.