×

Duality between Lagrangian and Legendrian invariants. (English) Zbl 1536.53166

Authors’ abstract: Consider a pair \((X,L)\) of a Weinstein manifold \(X\) with an exact Lagrangian submanifold \(L\), with ideal contact boundary \((Y,\Lambda)\), where \(Y\) is a contact manifold and \(\Lambda\subseteq Y\) is a Legendrian submanifold. We introduce the Chekanov-Eliashberg DG-algebra, \(CE^*(\Lambda)\), with coefficients in chains of the based loop space of \(\Lambda\), and study its relation to the Floer cohomology \(CF^*(L)\) of \(L\). Using the augmentation induced by \(L\), \(CE^*(\Lambda)\) can be expressed as the Adams cobar construction \(\Omega\) applied to a Legendrian coalgebra, \(LC_*(\Lambda)\). We define a twisting cochain \(\mathfrak{t}:LC_*(\Lambda)\to B(CF^*(L))^\#\) via holomorphic curve counts, where \(B\) denotes the bar construction and \(\#\) the graded linear dual. We show under simple-connectedness assumptions that the corresponding Koszul complex is acyclic, which then implies that \(CE^*(\Lambda)\) and \(CF^*(L)\) are Koszul dual. In particular, \(\mathfrak{t}\) induces a quasi-isomorphism between \(CE^*(\Lambda)\) and \(\Omega CF_*(L)\), the cobar of the Floer homology of \(L\).
This generalizes the classical Koszul duality result between \(C^*(L)\) and \(C_{-*}(\Omega L)\) for \(L\) a simply connected manifold, where \(\Omega L\) is the based loop space of \(L\), and provides the geometric ingredient explaining the computations given by T. Etgü and Y. Lekili [Geom. Topol. 21, No. 6, 3313–3389 (2017; Zbl 1378.57041)] in the case when \(X\) is a plumbing of cotangent bundles of 2-spheres (where an additional weight grading ensured Koszulity of \(\mathfrak{t}\)).
We use the duality result to show that under certain connectivity and local-finiteness assumptions, \(CE^*(\Lambda)\) is quasi-isomorphic to \(C_{-*}(\Omega L)\) for any Lagrangian filling \(L\) of \(\Lambda\).
Our constructions have interpretations in terms of wrapped Floer cohomology after versions of Lagrangian handle attachments. In particular, we outline a proof that \(CE^*(\Lambda)\) is quasi-isomorphic to the wrapped Floer cohomology of a fiber disk \(C\) in the Weinstein domain obtained by attaching \(T^*(\Lambda\times [0,+\infty))\) to \(X\) along \(\Lambda\) (or, in the terminology of Z. Sylvan [J. Topol. 12, No. 2, 372–441 (2019; Zbl 1430.53097)], the wrapped Floer cohomology of \(C\) in \(X\) with wrapping stopped by \(\Lambda\)). Along the way, we give a definition of wrapped Floer cohomology via holomorphic buildings that avoids the use of Hamiltonian perturbations, which might be of independent interest.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
53D12 Lagrangian submanifolds; Maslov index
57R17 Symplectic and contact topology in high or arbitrary dimension
57R58 Floer homology

References:

[1] 10.1007/s00029-009-0492-2 · Zbl 1204.14019 · doi:10.1007/s00029-009-0492-2
[2] 10.4310/JSG.2012.v10.n1.a3 · Zbl 1298.53092 · doi:10.4310/JSG.2012.v10.n1.a3
[3] 10.2140/gt.2010.14.627 · Zbl 1195.53106 · doi:10.2140/gt.2010.14.627
[4] 10.1073/pnas.42.7.409 · Zbl 0071.16404 · doi:10.1073/pnas.42.7.409
[5] 10.1007/BF02564350 · Zbl 0071.16403 · doi:10.1007/BF02564350
[6] 10.4310/ATMP.2014.v18.n4.a3 · Zbl 1315.81076 · doi:10.4310/ATMP.2014.v18.n4.a3
[7] 10.4007/annals.2007.166.657 · Zbl 1141.53078 · doi:10.4007/annals.2007.166.657
[8] 10.1090/S0894-0347-96-00192-0 · Zbl 0864.17006 · doi:10.1090/S0894-0347-96-00192-0
[9] 10.1090/conm/239/03597 · Zbl 0947.55020 · doi:10.1090/conm/239/03597
[10] 10.4310/JSG.2014.v12.n3.a5 · Zbl 1308.53119 · doi:10.4310/JSG.2014.v12.n3.a5
[11] 10.2140/gt.2012.16.301 · Zbl 1322.53080 · doi:10.2140/gt.2012.16.301
[12] 10.2140/gt.2003.7.799 · Zbl 1131.53312 · doi:10.2140/gt.2003.7.799
[13] 10.2307/1970101 · Zbl 0199.58201 · doi:10.2307/1970101
[14] 10.1016/B978-044481779-2/50014-6 · Zbl 0865.55006 · doi:10.1016/B978-044481779-2/50014-6
[15] 10.1215/00127094-2018-0055 · Zbl 1490.57034 · doi:10.1215/00127094-2018-0055
[16] 10.1090/S0002-9904-1977-14320-6 · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[17] 10.4310/JSG.2010.v8.n3.a2 · Zbl 1206.53083 · doi:10.4310/JSG.2010.v8.n3.a2
[18] ; Cieliebak, Kai; Eliashberg, Yakov, Flexible Weinstein manifolds, Symplectic, Poisson, and noncommutative geometry. Math. Sci. Res. Inst. Publ., 62, 1 (2014) · Zbl 1338.53003
[19] 10.1090/crmp/049/04 · Zbl 1214.53067 · doi:10.1090/crmp/049/04
[20] 10.1017/S0305004110000460 · Zbl 1243.57009 · doi:10.1017/S0305004110000460
[21] 10.1016/0040-9383(62)90093-9 · Zbl 0104.39603 · doi:10.1016/0040-9383(62)90093-9
[22] 10.2140/gt.2007.11.1083 · Zbl 1162.53064 · doi:10.2140/gt.2007.11.1083
[23] 10.4171/JEMS/126 · Zbl 1154.57020 · doi:10.4171/JEMS/126
[24] 10.1090/crmp/049/06 · Zbl 1207.57035 · doi:10.1090/crmp/049/06
[25] 10.2140/gt.2013.17.975 · Zbl 1267.53095 · doi:10.2140/gt.2013.17.975
[26] 10.1142/S0129167X05002941 · Zbl 1076.53099 · doi:10.1142/S0129167X05002941
[27] 10.1090/S0002-9947-07-04337-1 · Zbl 1119.53051 · doi:10.1090/S0002-9947-07-04337-1
[28] 10.4171/JEMS/650 · Zbl 1357.57044 · doi:10.4171/JEMS/650
[29] 10.2140/gt.2017.21.2161 · Zbl 1473.53097 · doi:10.2140/gt.2017.21.2161
[30] 10.1007/s00208-013-0958-6 · Zbl 1287.53068 · doi:10.1007/s00208-013-0958-6
[31] 10.2140/gt.2017.21.3313 · Zbl 1378.57041 · doi:10.2140/gt.2017.21.3313
[32] 10.2140/pjm.1987.128.251 · Zbl 0585.55013 · doi:10.2140/pjm.1987.128.251
[33] 10.1007/1-4020-4266-3_06 · Zbl 1089.53064 · doi:10.1007/1-4020-4266-3_06
[34] 10.4310/AJM.1997.v1.n1.a5 · Zbl 0938.32009 · doi:10.4310/AJM.1997.v1.n1.a5
[35] 10.1090/amsip/046.1 · doi:10.1090/amsip/046.1
[36] 10.1007/978-3-0348-8707-6 · doi:10.1007/978-3-0348-8707-6
[37] 10.1007/BF01388806 · Zbl 0592.53025 · doi:10.1007/BF01388806
[38] 10.1017/S0305004114000516 · Zbl 1371.55003 · doi:10.1017/S0305004114000516
[39] 10.1007/BF01389424 · Zbl 0644.55005 · doi:10.1007/BF01389424
[40] 10.1016/j.aim.2016.06.011 · Zbl 1348.14009 · doi:10.1016/j.aim.2016.06.011
[41] 10.1073/pnas.42.8.542 · Zbl 0071.16901 · doi:10.1073/pnas.42.8.542
[42] 10.24033/asens.1689 · Zbl 0799.18007 · doi:10.24033/asens.1689
[43] 10.1007/s00029-016-0286-2 · Zbl 1373.53119 · doi:10.1007/s00029-016-0286-2
[44] 10.1007/978-3-642-30362-3 · Zbl 1260.18001 · doi:10.1007/978-3-642-30362-3
[45] ; Lu, Di Ming; Palmieri, John H.; Wu, Quan Shui; Zhang, James J., Koszul equivalences in A∞-algebras, New York J. Math., 14, 325 (2008) · Zbl 1191.16011
[46] ; McCleary, John, User’s guide to spectral sequences. Mathematics Lecture Series, 12 (1985) · Zbl 0577.55001
[47] ; Milnor, J., Morse theory. Annals of Mathematics Studies, 51 (1963) · Zbl 0108.10401
[48] 10.1007/s40062-016-0141-3 · Zbl 1405.55001 · doi:10.1007/s40062-016-0141-3
[49] 10.2140/gt.2020.24.2149 · Zbl 1457.53064 · doi:10.2140/gt.2020.24.2149
[50] 10.1090/S0065-9266-2010-00631-8 · Zbl 1275.18002 · doi:10.1090/S0065-9266-2010-00631-8
[51] ; Prouté, Alain, A∞-structures : modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations, Repr. Theory Appl. Categ., 21, 1 (2011) · Zbl 1245.55007
[52] 10.2140/agt.2003.3.287 · Zbl 1028.55013 · doi:10.2140/agt.2003.3.287
[53] 10.4171/063 · Zbl 1159.53001 · doi:10.4171/063
[54] 10.2307/1969485 · Zbl 0045.26003 · doi:10.2307/1969485
[55] 10.1112/topo.12088 · Zbl 1430.53097 · doi:10.1112/topo.12088
[56] 10.1017/CBO9781139644136 · doi:10.1017/CBO9781139644136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.