×

What is loop multiplication anyhow? (English) Zbl 1405.55001

In general, it is difficult to calculate the algebra structure of \(H_* C(\Omega X)\) from the singular (or cubical) chain complex \(C_* (\Omega X)\) of a space \(X\). Let \(X\) be a simply connected space and let \(C(X)\) be the normalized \(1\)-reduced chains in the singular complex of \(X\). Then \(C(X)\) has a differential graded coalgebra structure with comultiplication \(\Delta : C(X) \to C(X) \otimes C(X)\). The cobar construction \(\Omega C(X)\) gives a differential graded algebra with a total differential called the Adams-Hilton model of \(X\).
To calculate the algebra structure of \(H_* C(\Omega X)\), J. F. Adams and P. J. Hilton [Comment. Math. Helv. 30, 305–330 (1956; Zbl 0071.16403)] invented an algorithm that associates to a space \(X\) a differential graded algebra \(\Omega C(X)\) whose homology is easy to calculate and is isomorphic to \(H_* C(\Omega X)\) as an algebra; that is, \[ H_* C(\Omega X) \cong H_* \Omega C(X) \] as algebras.
The Eilenberg-Moore geometric approximation theorem [S. Eilenberg and J. C. Moore, ibid. 40, 199–236 (1966; Zbl 0148.43203)] says that there is a natural isomorphism of the homology of the pullback with differential Cotor; that is, \[ H(Y \times_X Z) \cong \text{Cotor}^{C(X)} (C(Y), C(Z)). \]
In this paper, the author describes the natural homology isomorphism \[ HW \cong \text{Cotor}^{CA_1,CA_2,\ldots ,CA_{n-1}}(CX_1, CX_2,\ldots,CX_n) \] as the extension [J. Neisendorfer, Algebraic methods in unstable homotopy theory. Cambridge: Cambridge University Press (2010; Zbl 1190.55001)] of the Eilenberg-Moore geometric approximation theorem to multiple homotopy pullbacks \(W = X_1 \times_{A_1} X_2 \times_{A_2} X_3 \times_{A_3} \times \ldots \times_{A_{n-1}} X_n\) and use this extension to reinterpret the multiplicativity of the homology equivalence.
The author explicitly describes the coalgebra structures in the homology of loop spaces, commutative algebras, rational loop spaces and Quillen’s model category of commutative simply connected rational differential graded coalgebras, and shows how to use the Eilenberg-Moore geometric approximation theorem to compute the mod \(p\) homology of the double loop space of a sphere based on the Bott-Samelson theorem. For example, the author shows that if \(p\) is an odd prime and \(T_p[x]\) is the coalgebra \(\langle 1,x,x^2,\ldots,x^{p-1}\rangle\) with \(x\) of even degree \(2n\), then \[ \text{Cotor}^{T_p[x]} (\mathbb{Z}/p \mathbb{Z} , \mathbb{Z}/p \mathbb{Z}) = E(s^{-1}x) \otimes P(z), \] where deg\((s^{-1}x) = 2n-1\) and deg\((z) = 2pn-2\), and if \(p=2\) and \(x\) has arbitrary degree \(m\), then \[ \text{Cotor}^{T_p[x]} (\mathbb{Z}/2 \mathbb{Z} , \mathbb{Z}/2 \mathbb{Z}) = P(s^{-1}x) \] as primitively generated Hopf algebras, where deg\((s^{-1}x) = m-1\). There are too many beautiful results to be quoted here about loop multiplications.

MSC:

55-02 Research exposition (monographs, survey articles) pertaining to algebraic topology
55P35 Loop spaces
55Q40 Homotopy groups of spheres
55Q15 Whitehead products and generalizations
55R05 Fiber spaces in algebraic topology
Full Text: DOI

References:

[1] Adams, J.F.: On the cobar construction. Proc. Natl. Acad. Sci. USA 42, 409-412 (1956) · Zbl 0071.16404 · doi:10.1073/pnas.42.7.409
[2] Adams, J.F., Hilton, P.J.: On the chain algebra of a loop space. Commun. Math. Helv. 30, 305-330 (1956) · Zbl 0071.16403 · doi:10.1007/BF02564350
[3] Baues, H.-J.: The cobar construction as a Hopf algebra. Invent. Math. 132, 467-489 (1998) · Zbl 0912.55015
[4] Bott, R., Samelson, H.: On the Pontrjagin product in spaces of paths. Comment. Math. Helv. 27, 320-337 (1953) · Zbl 0052.19301 · doi:10.1007/BF02564566
[5] Browder, W.: On differential Hopf algebras. Trans. Am. Math. Soc. 107, 153-176 (1963) · Zbl 0114.39304 · doi:10.1090/S0002-9947-1963-0145530-7
[6] Cartan, H.: Algebres d’Eilenberg-MacLane, Seminaire Henri Cartan 1954/55, exposes 2-11. Ecole Normal Supérieure, Paris (1955) · Zbl 0364.18008
[7] Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: Torsion in homotopy groups. Ann. Math. 109, 121-168 (1979) · Zbl 0405.55018 · doi:10.2307/1971269
[8] Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Ill. J. Math. 9, 381-398 (1965) · Zbl 0135.02103
[9] Eilenberg, S., Moore, J.C.: Homology and fibrations i, coalgebras, cotensor product and its derived functors. Comment. Math. Helv. 40, 199-236 (1966) · Zbl 0148.43203 · doi:10.1007/BF02564371
[10] Getzler, E., Goerss, P.G.: A model category structure for differential graded coalgebras (1999). preprint · Zbl 0052.19301
[11] Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Birkhauser, Basel (1999) · Zbl 0949.55001
[12] Hess, K.: Homotopic Hopf-Galois extensions: foundations and examples. Geom. Topol. Monogr. 16, 79-132 (2009) · Zbl 1196.55010 · doi:10.2140/gtm.2009.16.79
[13] Hess, K., Kedziorak, M., Riehl, E., Shipley, B.: A necessary and sufficient condition for induced model structures (2015). (preprint) · Zbl 0071.16404
[14] Hess, K., Parent, P.-E., Scott, J., Tonks, A.: A canonical enriched Adams-Hilton model for simplicial sets. Adv. Math. 207(2), 847-875 (2005) · Zbl 1112.55010
[15] Hess, K., Shipley, B.: The homotopy theory of coalgebras over a comonad. Proc. London Math. Soc. 108(2), 484-516 (2014) · Zbl 1307.18016 · doi:10.1112/plms/pdt038
[16] Husemoller, D., Moore, J.C., Stasheff, J.D.: Differential homological algebra and homogeneous spaces. J. Pure Appl. Alg. 5, 113-185 (1974) · Zbl 0364.18008 · doi:10.1016/0022-4049(74)90045-0
[17] Koszul, J.L.: Homologie et cohomology des algebres de Lie. Bull. Soc. Math. France 85, 239-262 (1957)
[18] MacLane, S.: Homology. Springer, Berlin (1963) · Zbl 0071.16404
[19] May, J.P., Ponto, K.: More Concise Algebraic Topology. University of Chicago, Chicago (2012) · Zbl 1249.55001
[20] Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. 81, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[21] Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras (preprint 1959). In: Bass, H., Lam, T.Y. (eds.) Collected papers of John Milnor, V, Algebra, pp. 7-36. Amer. Math. Soc., USA (2011) · Zbl 0135.02103
[22] Moore, J.C.: The double suspension and p-primary components of the homotopy groups of spheres. Boll. Soc. Mat. Mexicana 1, 28-37 (1956) · Zbl 0071.38701
[23] Neisendorfer, J.A.: Algebraic Methods in Unstable Homotopy Theory. Cambridge University Press, Cambridge (2009) · Zbl 1190.55001
[24] Quillen, D.: Homotopical Algebra. Springer, Berlin (1967) · Zbl 0168.20903
[25] Quillen, D.: Rational homotopy theory. Ann. Math. 90, 295-295 (1969) · Zbl 0191.53702
[26] Toda, H.: On the double suspension \[E^2\] E2. J. Inst. Polytech. Osaka City Univ. Ser. A 7, 103-145 (1956) · Zbl 0073.18303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.