×

Celebrating Loday’s associahedron. (English) Zbl 1534.52012

The associahedron is a polytope whose combinatorial structure indifferently encodes rotations between binary trees, flips in the triangulations of a convex polygon, or associativity in parenthesised words. This structure can be traced back to Dov Tamari’s PhD thesis and Jim Stasheff’s work on loop spaces, but at that time, it was described as a topological ball and it took decades before it was constructed as a euclidean polytope. A particularly elegant geometric construction of the associahedron has been given by J.-L. Loday in a seminal article that appeared in Archiv der Mathematik [Arch. Math. 83, No. 3, 267–278 (2004; Zbl 1059.52017)].
For the combined 20th anniversary of Jean-Louis Loday’s article and 75th anniversary of Archiv der Mathematik, Vincent Pilaud, Francisco Santos, and Günter M. Ziegler survey Loday’s construction and a number of the results it has inspired since then.
The survey shows in a first part how Loday’s construction influenced the study of the lattice quotients of the weak order from both a geometric and an algebraic perspective. Its second and third parts review related constructions that owe something to Loday’s and their generalizations that arise for instance from the theory of cluster algebra, from the study of subword complexes, or from the theory of quiver representation. The fourth part highlights how Loday’s construction is instrumental in the recent definition of a cellular diagonal for the associahedron. In the last part, a list of other generalizations of the associahedron is provided that can be obtained from Loday’s construction, further illustrating its depth and influence.

MSC:

52B11 \(n\)-dimensional polytopes
52B12 Special polytopes (linear programming, centrally symmetric, etc.)
52B15 Symmetry properties of polytopes

Citations:

Zbl 1059.52017

References:

[1] Aguiar, M., Ardila, F.: Hopf Monoids and Generalized Permutahedra. Memoirs of the American Mathematical Society, Vol. 289, No. 1437 (2023) · Zbl 07753149
[2] Aneesh, P.B., Banerjee, P., Jagadale, M., John, R.R., Laddha, A., Mahato, S.: On positive geometries of quartic interactions: Stokes polytopes, lower forms on associahedra and world-sheet forms. J. High Energy Phys. 2020(4), Art No. 149 (2020)
[3] Ardila, F., Doker, J.: Lifted generalized permutahedra and composition polynomials. Adv. Appl. Math. 50(4), 607-633 (2013) · Zbl 1280.52009
[4] Arkani-Hamed, N., Bai, Y., He, S., Yan, G.: Scattering forms and the positive geometry of kinematics, color and the worldsheet. J. High Energy Phys. 2018(5), Art No. 96 (2018) · Zbl 1391.81200
[5] Aoki, T., Higashitani, A., Iyama, O., Kase, R., Mizuno, Y.: Fans and polytopes in tilting theory I: Foundations. arXiv:2203.15213 (2022)
[6] Arkani-Hamed, N., Trnka, J.: The amplituhedron. J. High Energy Phys. 2014(10), Art No. 30 (2014) · Zbl 1468.81075
[7] Aneesh, P.B., Jagadale, M., Kalyanapuram, N.: Accordiohedra as positive geometries for generic scalar field theories. Phys. Rev. D 100(10), 106013, 12 pp. (2019)
[8] Albertin, D., Pilaud, V., Ritter, J.: Removahedral congruences versus permutree congruences. Electron. J. Combin. 28(4), Paper No. 4.8, 38 pp. (2021) · Zbl 1475.52017
[9] Assem, I.; Skowroński, A., Iterated tilted algebras of type \(\tilde{\textbf{A} }_n \), Math. Z., 195, 2, 269-290 (1987) · Zbl 0601.16022
[10] Aguiar, M.; Sottile, F., Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math., 191, 2, 225-275 (2005) · Zbl 1056.05139
[11] Aguiar, M.; Sottile, F., Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra, 295, 2, 473-511 (2006) · Zbl 1099.16015
[12] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge (2006) · Zbl 1092.16001
[13] Baryshnikov, Y.: On Stokes sets. In: New Developments in Singularity Theory (Cambridge, 2000), pp. 65-86. NATO Sci. Ser. II Math. Phys. Chem., 21. Kluwer Acad. Publ., Dordrecht (2001) · Zbl 1065.58028
[14] Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231. Springer, New York (2005) · Zbl 1110.05001
[15] Bernardi, O.; Bonichon, N., Intervals in Catalan lattices and realizers of triangulations, J. Combin. Theory Ser. A, 116, 1, 55-75 (2009) · Zbl 1161.06001
[16] Benedetti, C.; Bergeron, N.; Machacek, J., Hypergraphic polytopes: combinatorial properties and antipode, J. Comb., 10, 3, 515-544 (2019) · Zbl 1411.05193
[17] Backman, S., Bottman, N., Poliakova, D.: Higher categorical associahedra. In preparation (2023)
[18] Bergeron, N., Cartier, N., Ceballos, C., Pilaud, V.: Lattices of acyclic pipe dreams. arXiv:2303.11025 (2023)
[19] Bostan, A., Chyzak, F., Pilaud, V.: Refined product formulas for Tamari intervals. arXiv:2303.10986 (2023)
[20] Brüstle, T.; Douville, G.; Mousavand, K.; Thomas, H.; Yıldırım, E., On the combinatorics of gentle algebras, Can. J. Math., 72, 6, 1551-1580 (2020) · Zbl 1456.16007
[21] Berge, C.: Hypergraphs. Combinatorics of Finite Sets. Translated from the French. North-Holland Mathematical Library, 45. North-Holland Publishing Co., Amsterdam (1989) · Zbl 0674.05001
[22] Bergeron, F., Multivariate diagonal coinvariant spaces for complex reflection groups, Adv. Math., 239, 97-108 (2013) · Zbl 1284.05329
[23] Björner, A.; Edelman, PH; Ziegler, GM, Hyperplane arrangements with a lattice of regions, Discrete Comput. Geom., 5, 3, 263-288 (1990) · Zbl 0698.51010
[24] Boussicault, A.; Feray, V.; Lascoux, A.; Reiner, V., Linear extension sums as valuations on cones, J. Algebra. Combin., 35, 4, 573-610 (2012) · Zbl 1242.05274
[25] Billera, LJ; Filliman, P.; Sturmfels, B., Constructions and complexity of secondary polytopes, Adv. Math., 83, 2, 155-179 (1990) · Zbl 0714.52004
[26] Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1-52 (2005) · Zbl 1135.16013
[27] Bergeron, N., Hohlweg, C., Lange, C., Thomas, H.: Isometry classes of generalized associahedra. Sém. Lothar. Combin. 61A, Art. B61Aa, 13 pp. (2009) · Zbl 1227.05273
[28] Baralić, D., Ivanović, J., Petrić, Z.: A simple permutoassociahedron. Discrete Math. 342(12), 111591, 18 pp. (2019) · Zbl 1475.52018
[29] Björner, A.: Orderings of Coxeter groups. In: Combinatorics and Algebra (Boulder, Colo., 1983), pp. 175-195. Contemp. Math., 34. Amer. Math. Soc., Providence, RI (1984) · Zbl 0594.20029
[30] Baumann, P.; Kamnitzer, J.; Tingley, P., Affine Mirković-Vilonen polytopes, Publ. Math. Inst. Hautes Études Sci., 120, 113-205 (2014) · Zbl 1332.17012
[31] Banerjee, P., Laddha, A., Raman, P.: Stokes polytopes: the positive geometry for \(\phi^4\) interactions. J. High Energy Phys. Phys. 2019(8), Art. No. 67, 34 pp. (2019) · Zbl 1421.81152
[32] Barnard, E., McConville, T.: Lattices from graph associahedra and subalgebras of the Malvenuto-Reutenauer algebra. Algebra Universalis. 82(1), Paper No. 2, 53 pp. (2021) · Zbl 1484.06021
[33] Bazier-Matte, V., Chapelier-Laget, N., Douville, G., Mousavand, K., Thomas, H., Yıldırım, E.: ABHY Associahedra and Newton polytopes of \({F}\)-polynomials for finite type cluster algebras. J. Lond. Math. Soc. (2) (2023). doi:10.1112/jlms.12817
[34] Barnard, E., Novelli, J.-C., Pilaud, V.: On simple congruences of the weak order. In preparation (2023)
[35] Bottman, N., \(2\)-associahedra, Algebra Geom. Topol., 19, 2, 743-806 (2019) · Zbl 1417.53093
[36] Bottman, N., Poliakova, D.: Constrainahedra. arXiv:2208.14529 (2022)
[37] Bergeron, F.; Préville-Ratelle, L-F, Higher trivariate diagonal harmonics via generalized Tamari posets, J. Combin., 3, 3, 317-341 (2012) · Zbl 1291.05213
[38] Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1-2), 145-179 (1987) · Zbl 0612.16013
[39] Billera, L.-J., Sturmfels, B.: Fiber polytopes. Ann. of Math. (2), 135(3), 527-549 (1992) · Zbl 0762.52003
[40] Carr, MP; Devadoss, SL, Coxeter complexes and graph-associahedra, Topology Appl., 153, 12, 2155-2168 (2006) · Zbl 1099.52001
[41] Chapoton, F.; Fomin, S.; Zelevinsky, A., Polytopal realizations of generalized associahedra, Can. Math. Bull., 45, 4, 537-566 (2002) · Zbl 1018.52007
[42] Chapoton, F.: Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar. Combin. 55, Art. B55f, 18 pp. (2005/07) · Zbl 1207.05011
[43] Chapoton, F., Algèbres de Hopf des permutahèdres, associahèdres et hypercubes, Adv. Math., 150, 2, 264-275 (2000) · Zbl 0958.16038
[44] Chapoton, F.: The anticyclic operad of moulds. Int. Math. Res. Not. IMRN 2007(20), Art. ID rnm078, 36 pp. (2007) · Zbl 1149.18004
[45] Chapoton, F.: Stokes posets and serpent nests. Discrete Math. Theor. Comput. Sci. 18(3), Paper No. 18, 30 pp. (2016) · Zbl 1401.06002
[46] Chapoton, F., Une note sur les intervalles de Tamari, Ann. Math. Blaise Pascal, 25, 2, 299-314 (2018) · Zbl 1507.06001
[47] Chhatoi, S.: A note on convex realization of halohedron. arXiv:1910.13786 (2019)
[48] Chapoton, F., Hivert, F., Novelli, J.-C., Thibon, J.-Y.: An operational calculus for the mould operad. Int. Math. Res. Not. IMRN 2008(9), Art. ID rnn018, 22 pp. (2008) · Zbl 1146.18301
[49] Castillo, F., Liu, F.: The permuto-associahedron revisited. Eur. J. Combin. 110, Paper No. 103706, 30 pp. (2023) · Zbl 1518.52005
[50] Ceballos, C.; Labbé, J-P; Stump, C., Subword complexes, cluster complexes, and generalized multi-associahedra, J. Algebra. Combin., 39, 1, 17-51 (2014) · Zbl 1286.05180
[51] Cardinal, J., Merino, A., Mütze, T.: Efficient generation of elimination trees and graph associahedra. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2128-2140. [Society for Industrial and Applied Mathematics (SIAM)], Philadelphia, PA (2022). Extended abstract of arXiv:2106.16204 · Zbl 07883665
[52] Capoyleas, V.; Pach, J., A Turán-type theorem on chords of a convex polygon, J. Combin. Theory Ser. B, 56, 1, 9-15 (1992) · Zbl 0783.05032
[53] Ceballos, C.; Pilaud, V., The diameter of type \(D\) associahedra and the non-leaving-face property, Eur. J. Combin., 51, 109-124 (2016) · Zbl 1337.52010
[54] Chatel, G.; Pilaud, V., Cambrian Hopf algebras, Adv. Math., 311, 598-633 (2017) · Zbl 1369.05211
[55] Chapoton, F., Pilaud, V.: Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra. arXiv:2201.06896 (2022)
[56] Ceballos, C.; Padrol, A.; Sarmiento, C., Geometry of \(\nu \)-Tamari lattices in types \(A\) and \(B\), Trans. Amer. Math. Soc., 371, 4, 2575-2622 (2019) · Zbl 1402.05221
[57] Cardinal, J.; Pournin, L.; Valencia-Pabon, M., Diameter estimates for graph associahedra, Ann. Comb., 26, 4, 873-902 (2022) · Zbl 1503.05029
[58] Crespo Ruiz, L.: Realizations of multiassociahedra via bipartite rigidity. arXiv:2303.15776 (2023)
[59] Crespo Ruiz, L., Santos, F.: Realizations of multiassociahedra via rigidity. arXiv:2212.14265 (2022)
[60] Ceballos, C.; Santos, F.; Ziegler, GM, Many non-equivalent realizations of the associahedron, Combinatorica, 35, 5, 513-551 (2015) · Zbl 1389.52013
[61] Ceballos, C., Ziegler, G.M.: Realizing the associahedron: mysteries and questions. In: Associahedra, Tamari Lattices and Related Structures, pp. 119-127. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1268.52008
[62] De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Math. (N.S.) 1(3), 459-494 (1995) · Zbl 0842.14038
[63] Defant, C.: Fertilitopes. Discrete Comput. Geom. 70(3), 713-752 (2023) · Zbl 1523.52018
[64] Dehornoy, P., On the rotation distance between binary trees, Adv. Math., 223, 4, 1316-1355 (2010) · Zbl 1188.05060
[65] Devadoss, SL, A realization of graph associahedra, Discrete Math., 309, 1, 271-276 (2009) · Zbl 1189.05176
[66] Devadoss, S.; Forcey, S., Marked tubes and the graph multiplihedron, Algebra Geom. Topol., 8, 4, 2081-2108 (2008) · Zbl 1160.52007
[67] Devadoss, SL; Forcey, S.; Reisdorf, S.; Showers, P., Convex polytopes from nested posets, Eur. J. Combin., 43, 229-248 (2015) · Zbl 1301.05231
[68] Dana, W., Hanson, E., Thomas, H.: Shard polytopes via representation theory. In preparation (2023)
[69] Demonet, L.; Iyama, O.; Reading, N.; Reiten, I.; Thomas, H., Lattice theory of torsion classes: beyond \(\tau \)-tilting theory, Trans. Amer. Math. Soc. Ser. B, 10, 542-612 (2023) · Zbl 1533.16015
[70] Davis, M.; Januszkiewicz, T.; Scott, RA, Fundamental groups of blow-ups, Adv. Math., 177, 1, 115-179 (2003) · Zbl 1080.52512
[71] Dress, A.; Koolen, JH; Moulton, VL, On line arrangements in the hyperbolic plane, Eur. J. Combin., 23, 5, 549-557 (2002) · Zbl 1023.52007
[72] Delcroix-Oger, B., Josuat-Vergès, M., Laplante-Anfossi, G., Pilaud, V., Stoeckl, K.: The combinatorics of the permutahedron diagonals. arXiv:2308.12119 (2023)
[73] Došen, K.; Petrić, Z., Hypergraph polytopes, Topol. Appl., 158, 12, 1405-1444 (2011) · Zbl 1222.05193
[74] De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer, Heidelberg (2010) · Zbl 1207.52002
[75] Dotsenko, V.; Shadrin, S.; Vallette, B., Toric varieties of Loday’s associahedra and noncommutative cohomological field theories, J. Topol., 12, 2, 463-535 (2019) · Zbl 1421.18002
[76] Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), pp. 69-87. Gordon and Breach, New York (1970) · Zbl 0268.05019
[77] Fang, W., Fusy, E., Nadeau, P.: Bijections between Tamari intervals and blossoming trees. In preparation (2023)
[78] Forcey, S.; Keefe, L.; Sands, W., Split-facets for balanced minimal evolution polytopes and the permutoassociahedron, Bull. Math. Biol., 79, 5, 975-994 (2017) · Zbl 1373.90072
[79] Fomin, S.: Cluster algebras portal. http://www.math.lsa.umich.edu/ fomin/cluster.html
[80] Forcey, S., Convex hull realizations of the multiplihedra, Topol. Appl., 156, 2, 326-347 (2008) · Zbl 1158.55012
[81] Fomin, S., Reading, N.: Root systems and generalized associahedra. In: Geometric Combinatorics, pp. 63-131. IAS/Park City Math. Ser., 13. Amer. Math. Soc., Providence, RI (2007) · Zbl 1147.52005
[82] Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62(4), 437-468 (2005) · Zbl 1092.52006
[83] Forcey, S.; Springfield, D., Geometric combinatorial algebras: cyclohedron and simplex, J. Algebra. Combin., 32, 4, 597-627 (2010) · Zbl 1201.51023
[84] Fomin, S., Williams, L., Zelevinsky, A.: Introduction to Cluster Algebras. In preparation (2023). First chapters available as arXiv:1608.05735, arXiv:1707.07190, arXiv:2008.09189, and arXiv:2106.02160
[85] Fomin, S.; Zelevinsky, A., Cluster algebras, I. Foundations. J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017
[86] Fomin, S.; Zelevinsky, A., Cluster algebras. II. Finite type classification, Invent. Math., 154, 1, 63-121 (2003) · Zbl 1054.17024
[87] Fomin, S., Zelevinsky, A.: \(Y\)-systems and generalized associahedra. Ann. of Math. (2) 158(3), 977-1018 (2003) · Zbl 1057.52003
[88] Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) · Zbl 1127.16023
[89] Galashin, P.: Poset associahedra. arXiv:2110.07257 (2021)
[90] Giraudo, S., Algebraic and combinatorial structures on pairs of twin binary trees, J. Algebra, 360, 115-157 (2012) · Zbl 1253.05146
[91] Giraudo, S., Nonsymmetric Operads in Combinatorics (2018), Cham: Springer, Cham · Zbl 1515.05002
[92] Gelfand, IM; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, VS; Thibon, J-Y, Noncommutative symmetric functions, Adv. Math., 112, 2, 218-348 (1995) · Zbl 0831.05063
[93] Gelfand, I., Kapranov, M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Reprint of the 1994 Edition. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA (2008) · Zbl 1138.14001
[94] Garver, A., McConville, T.: Enumerative properties of Grid-Associahedra. arXiv:1705.04901 (2017) · Zbl 1385.05087
[95] Garver, A.; McConville, T., Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions, J. Combin. Theory Ser. A, 158, 126-175 (2018) · Zbl 1427.05235
[96] Guilbaud, GT; Rosenstiehl, P., Analyse algébrique d’un scrutin, Math. Inf. Sci. Humanies., 4, 9-33 (1963)
[97] Haiman, M.: Constructing the associahedron. Unpublished manuscript. http://www.math.berkeley.edu/ mhaiman/ftp/assoc/manuscript.pdf (1984)
[98] Hohlweg, C.; Lange, C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37, 4, 517-543 (2007) · Zbl 1125.52011
[99] Hohlweg, C., Lortie, J., Raymond, A.: The centers of gravity of the associahedron and of the permutahedron are the same. Electron. J. Combin. 17(1), Research Paper 72, 14 pp. (2010) · Zbl 1225.05246
[100] Hohlweg, C.; Lange, C.; Thomas, H., Permutahedra and generalized associahedra, Adv. Math., 226, 1, 608-640 (2011) · Zbl 1233.20035
[101] Hoang, HP; Mütze, T., Combinatorial generation via permutation languages. II. Lattice congruences, Israel J. Math., 244, 1, 359-417 (2021) · Zbl 1479.05182
[102] Hurtado, F.; Noy, M., Graph of triangulations of a convex polygon and tree of triangulations, Comput. Geom., 13, 3, 179-188 (1999) · Zbl 0948.68127
[103] Hivert, F.; Novelli, J-C; Thibon, J-Y, The algebra of binary search trees, Theoret. Comput. Sci., 339, 1, 129-165 (2005) · Zbl 1072.05052
[104] Hohlweg, C.: Permutahedra and associahedra: generalized associahedra from the geometry of finite reflection groups. In: Associahedra, Tamari Lattices and Related Structures, pp. 129-159. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1271.52012
[105] Hohlweg, C.; Pilaud, V.; Stella, S., Polytopal realizations of finite type \({\textbf{g} } \)-vector fans, Adv. Math., 328, 713-749 (2018) · Zbl 1382.05075
[106] Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028
[107] Ingalls, C.; Thomas, H., Noncrossing partitions and representations of quivers, Compos. Math., 145, 6, 1533-1562 (2009) · Zbl 1182.16012
[108] Ivanović, J., Geometrical realisations of the simple permutoassociahedron by Minkowski sums, Appl. Anal. Discrete Math., 14, 1, 55-93 (2020) · Zbl 1474.52018
[109] John, R.R., Kojima, R., Mahato, S.: Weights, recursion relations and projective triangulations for positive geometry of scalar theories. J. High Energy Phys. 2020(10), Art. No. 37, 33 pp. (2020) · Zbl 1456.81454
[110] Jagadale, M., Laddha, A.: On the positive geometry of quartic interactions III: one loop integrands from polytopes. J. High Energy Phys. 2021(7), Art No. 136, 34 pp. (2021)
[111] Johnson, SM, Generation of permutations by adjacent transposition, Math. Comp., 17, 282-285 (1963) · Zbl 0114.01203
[112] Jonsson, J., Generalized triangulations and diagonal-free subsets of stack polyominoes, J. Combin. Theory Ser. A, 112, 1, 117-142 (2005) · Zbl 1084.05017
[113] Jahn, D., Stump, C.: Bruhat intervals, subword complexes and brick polyhedra for finite Coxeter groups. Math. Z. 304, Paper No. 24, 32 pp. (2023) · Zbl 1518.05209
[114] Kalyanapuram, N.: Geometric recursion from polytope triangulations and twisted homology. Phys. Rev. D 102(12), 125027, 8 pp. (2020)
[115] Kalyanapuram, N.: On polytopes and generalizations of the KLT relations. J. High Energy Phys. 2020(12), Art. No. 057, 31 pp. (2020)
[116] Kalyanapuram, N.: Stokes polytopes and intersection theory. Phys. Rev. D 101(10), 105010, 16 pp. (2020)
[117] Kapranov, MM, The permutoassociahedron, Mac Lane’s coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, 85, 2, 119-142 (1993) · Zbl 0812.18003
[118] Keller, B., Introduction to \(A\)-infinity algebras and modules, Homol. Homotopy Appl., 3, 1, 1-35 (2001) · Zbl 0989.18009
[119] Kalyanapuram, N., Jha, R.G.: Positive geometries for all scalar theories from twisted intersection theory. Phys. Rev. Res. 2(3), 033119, 6 pp. (2020)
[120] Knutson, A.; Miller, E., Subword complexes in Coxeter groups, Adv. Math., 184, 1, 161-176 (2004) · Zbl 1069.20026
[121] Knutson, A., Miller, E.: Gröbner geometry of Schubert polynomials. Ann. of Math. (2) 161(3), 1245-1318 (2005) · Zbl 1089.14007
[122] Knuth, D.E.: The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1. Addison-Wesley, Upper Saddle River, NJ (2011) · Zbl 1354.68001
[123] Kojima, R.: Weights and recursion relations for \(\phi^p\) tree amplitudes from the positive geometry. J. High Energy Phys. Phys. 2020(8), Art. No. 54, 33 pp. (2020) · Zbl 1454.81236
[124] Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at \(q=0\). J. Algebra Combin. 6(4), 339-376 (1997) · Zbl 0881.05120
[125] Laplante-Anfossi, G.: The diagonal of the operahedra. Adv. Math. 405, Paper No. 108494, 50 pp. (2022) · Zbl 1498.52021
[126] Law, S.: Combinatorial realization of the Hopf algebra of sashes. arXiv:1407.4073 (2014) · Zbl 1393.05302
[127] Lee, CW, The associahedron and triangulations of the \(n\)-gon, Eur. J. Combin., 10, 6, 551-560 (1989) · Zbl 0682.52004
[128] Loday, J-L, Realization of the Stasheff polytope, Arch. Math. (Basel), 83, 3, 267-278 (2004) · Zbl 1059.52017
[129] Loday, J.-L.: The multiple facets of the associahedron. Preprint (2005). https://www.claymath.org/library/academy/LectureNotes05/Lodaypaper.pdf
[130] Loday, J.-L.: The diagonal of the Stasheff polytope. In: Higher Structures in Geometry and Physics, pp. 269-292. Progr. Math., 287, Birkhäuser/Springer, New York (2011) · Zbl 1220.18007
[131] Lange, C.; Pilaud, V., Associahedra via spines, Combinatorica, 38, 2, 443-486 (2018) · Zbl 1413.52017
[132] Loday, J-L; Ronco, MO, Hopf algebra of the planar binary trees, Adv. Math., 139, 2, 293-309 (1998) · Zbl 0926.16032
[133] Loday, J-L; Ronco, MO, Order structure on the algebra of permutations and of planar binary trees, J. Algebraic Combin., 15, 3, 253-270 (2002) · Zbl 0998.05013
[134] Law, S.; Reading, N., The Hopf algebra of diagonal rectangulations, J. Combin. Theory Ser. A, 119, 3, 788-824 (2012) · Zbl 1246.16027
[135] Lucas, JM, The rotation graph of binary trees is Hamiltonian, J. Algorithms, 8, 4, 503-535 (1987) · Zbl 0641.05015
[136] Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren der mathematischen Wissenschaften, 346. Springer, Heidelberg (2012) · Zbl 1260.18001
[137] Markl, M., Bipermutahedron and biassociahedron, J. Homotopy Relat. Struct., 10, 2, 205-238 (2015) · Zbl 1351.18011
[138] May, J.P.: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, vol. 271. Springer, Berlin (1972) · Zbl 0244.55009
[139] McConville, T., Lattice structure of Grid-Tamari orders, J. Combin. Theory Ser. A, 148, 27-56 (2017) · Zbl 1355.05276
[140] McMullen, P.: Representations of polytopes and polyhedral sets. Geometriae Dedicata 2, 83-99 (1973) · Zbl 0273.52006
[141] Meyer, W., Indecomposable polytopes, Trans. Amer. Math. Soc., 190, 77-86 (1974) · Zbl 0255.52003
[142] Müller-Hoissen, F., Pallo, J.M., Stasheff, J. (editors): . Associahedra, Tamari Lattices and Related Structures. Tamari Memorial Festschrift. Progress in Mathematics, 299. Birkhäuser/Springer, Basel (2012) · Zbl 1253.00013
[143] Mizuno, Y., Classifying \(\tau \)-tilting modules over preprojective algebras of Dynkin type, Math. Z., 277, 3-4, 665-690 (2014) · Zbl 1355.16008
[144] Manneville, T., Pilaud, V.: Graph properties of graph associahedra. Sém. Lothar. Combin. 73, Art. B73d, 31 pp. (2014-2016) · Zbl 1326.05041
[145] Manneville, T.; Pilaud, V., Compatibility fans for graphical nested complexes, J. Combin. Theory Ser. A, 150, 36-107 (2017) · Zbl 1362.05140
[146] Manneville, T.; Pilaud, V., Geometric realizations of the accordion complex of a dissection, Discrete Comput. Geom., 61, 3, 507-540 (2019) · Zbl 1417.52015
[147] Mantovani, C., Padrol, A., Pilaud, V.: Poset associahedra as sections of graph associahedra. In preparation (2022)
[148] Malvenuto, C.; Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 3, 967-982 (1995) · Zbl 0838.05100
[149] Markl, M.; Shnider, S., Associahedra, cellular \(W\)-construction and products of \(A_\infty \)-algebras, Trans. Amer. Math. Soc., 358, 6, 2353-2372 (2006) · Zbl 1093.18005
[150] Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002) · Zbl 1017.18001
[151] Masuda, N.; Thomas, H.; Tonks, A.; Vallette, B., The diagonal of the associahedra, J. Éc. Polytech. Math., 8, 121-146 (2021) · Zbl 1455.18014
[152] Nakamigawa, T.: A generalization of diagonal flips in a convex polygon. Combinatorics and optimization (Okinawa, 1996). Theoret. Comput. Sci. 235(2), 271-282 (2000) · Zbl 0938.68880
[153] Novelli, J.-C.: On the hypoplactic monoid. Formal power series and algebraic combinatorics (Vienna, 1997). Discrete Math. 217(1-3), 315-336 (2000) · Zbl 0960.05106
[154] Novelli, J-C; Reutenauer, C.; Thibon, J-Y, Generalized descent patterns in permutations and associated Hopf algebras, Eur. J. Combin., 32, 4, 618-627 (2011) · Zbl 1235.05154
[155] Pilaud, V., Which nestohedra are removahedra?, Rev. Colombiana Mat., 51, 1, 21-42 (2017) · Zbl 1384.52005
[156] Pilaud, V., Brick polytopes, lattice quotients, and Hopf algebras, J. Combin. Theory Ser. A, 155, 418-457 (2018) · Zbl 1377.05024
[157] Pilaud, V., Hopf algebras on decorated noncrossing arc diagrams, J. Combin. Theory Ser. A, 161, 486-507 (2019) · Zbl 1400.05281
[158] Pilaud, V.: From permutahedra to associahedra, a walk through geometric and algebraic combinatorics. Habilitation à Diriger des Recherches, Université Paris-Saclay (2020). http://www.lix.polytechnique.fr/ pilaud/documents/reports/habilitationVincentPilaud.pdf
[159] Pilaud, V.: Acyclic reorientation lattices and their lattice quotients. arXiv:2111.12387 (2021) · Zbl 1515.05080
[160] Pilaud, V.: Pebble trees. arXiv:2205.06686 (2022)
[161] Poliakova, D.: Homotopical algebra and combinatorics of polytopes. PhD thesis, University of Copenhagen (2021)
[162] Postnikov, A., Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN, 2009, 6, 1026-1106 (2009) · Zbl 1162.52007
[163] Pournin, L., The diameter of associahedra, Adv. Math., 259, 13-42 (2014) · Zbl 1292.52011
[164] Pournin, L., The asymptotic diameter of cyclohedra, Israel J. Math., 219, 2, 609-635 (2017) · Zbl 1371.52010
[165] Pilaud, V.; Pocchiola, M., Multitriangulations, pseudotriangulations and primitive sorting networks, Discrete Comput. Geom., 48, 1, 142-191 (2012) · Zbl 1247.52012
[166] Pilaud, V.; Pons, V., Permutrees, Algebra. Combin., 1, 2, 173-224 (2018) · Zbl 1388.05039
[167] Pilaud, V., Poullot, G.: Deformation cones of quotientopes. In preparation (2023) · Zbl 1498.52018
[168] Palu, Y.; Pilaud, V.; Plamondon, P-G, Non-kissing and non-crossing complexes for locally gentle algebras, J. Combin. Algebra, 3, 4, 401-438 (2019) · Zbl 1433.05322
[169] Palu, Y., Pilaud, V., Plamondon, P.-G.: Non-kissing complexes and tau-tilting for gentle algebras. Mem. Amer. Math. Soc. 274(1343), vii+110 pp. (2021) · Zbl 1541.16001
[170] Padrol, A.; Pilaud, V.; Poullot, G., Deformation cones of graph associahedra and nestohedra, Eur. J. Combin., 107 (2023) · Zbl 1498.52018
[171] Padrol, A.; Palu, Y.; Pilaud, V.; Plamondon, P-G, Associahedra for finite type cluster algebras and minimal relations between \({\varvec{g}} \)-vectors, Proc. London Math. Soc., 127, 513-588 (2023) · Zbl 1528.13023
[172] Padrol, A.; Pilaud, V.; Ritter, J., Shard polytopes, Int. Math. Res. Not. IMRN, 2023, 9, 7686-7796 (2023) · Zbl 1522.52026
[173] Petersen, TK; Pylyavskyy, P.; Speyer, DE, A non-crossing standard monomial theory, J. Algebra, 324, 5, 951-969 (2010) · Zbl 1203.13026
[174] Prouté, A.: \(A_{\infty }\)-structures. Modèles minimaux de Baues-Lemaire et Kadeishvili et homologie des fibrations. PhD thesis, Université Paris (1986) · Zbl 1245.55007
[175] Préville-Ratelle, L-F; Viennot, X., The enumeration of generalized Tamari intervals, Trans. Amer. Math. Soc., 369, 7, 5219-5239 (2017) · Zbl 1433.05323
[176] Postnikov, A.; Reiner, V.; Williams, LK, Faces of generalized permutohedra, Doc. Math., 13, 207-273 (2008) · Zbl 1167.05005
[177] Pilaud, V.; Santos, F., Multitriangulations as complexes of star polygons, Discrete Comput. Geom., 41, 2, 284-317 (2009) · Zbl 1177.52007
[178] Pilaud, V.; Santos, F., The brick polytope of a sorting network, Eur. J. Combin., 33, 4, 632-662 (2012) · Zbl 1239.52026
[179] Pilaud, V.; Stump, C., Brick polytopes of spherical subword complexes and generalized associahedra, Adv. Math., 276, 1-61 (2015) · Zbl 1405.05196
[180] Pilaud, V.; Stump, C., Vertex barycenter of generalized associahedra, Proc. Amer. Math. Soc., 143, 6, 2623-2636 (2015) · Zbl 1316.52022
[181] Pilaud, V.; Santos, F., Quotientopes, Bull. Lond. Math. Soc., 51, 3, 406-420 (2019) · Zbl 1420.52015
[182] Poirier, K.; Tradler, T., The combinatorics of directed planar trees, J. Combin. Theory Ser. A, 160, 31-61 (2018) · Zbl 1394.05021
[183] Pocchiola, M.; Vegter, G., Topologically sweeping visibility complexes via pseudotriangulations, Discrete Comput. Geom., 16, 4, 419-453 (1996) · Zbl 0857.68063
[184] Rado, R., An inequality, J. Lond. Math. Soc., 27, 1-6 (1952) · Zbl 0047.29701
[185] Raman, P.: The positive geometry for \(\phi^p\) interactions. J. High Energy Phys. 2019(10), Art. No. 271, 33 pp. (2019) · Zbl 1427.81179
[186] Reading, N., Lattice congruences of the weak order, Order, 21, 4, 315-344 (2004) · Zbl 1097.20036
[187] Reading, N., Lattice congruences, fans and Hopf algebras, J. Combin. Theory Ser. A, 110, 2, 237-273 (2005) · Zbl 1133.20027
[188] Reading, N., Cambrian lattices, Adv. Math., 205, 2, 313-353 (2006) · Zbl 1106.20033
[189] Reading, N.: From the Tamari lattice to Cambrian lattices and beyond. In: Associahedra, Tamari Lattices and Related Structures, pp. 293-322. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1292.20044
[190] Reading, N., Noncrossing arc diagrams and canonical join representations, SIAM J. Discrete Math., 29, 2, 736-750 (2015) · Zbl 1314.05015
[191] Reading, N.: Finite Coxeter groups and the weak order. In Lattice theory: Special Topics and Applications. Vol. 2, pp. 489-561. Birkhäuser/Springer, Cham (2016) · Zbl 1388.20056
[192] Reading, N.: Lattice theory of the poset of regions. In: Lattice Theory: Special Topics and Applications. Vol. 2, pp. 399-487. Birkhäuser/Springer, Cham (2016) · Zbl 1404.06004
[193] Ronco, M.: Generalized Tamari order. In: Associahedra, Tamari Lattices and Related Structures, pp. 339-350. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1260.05122
[194] Reading, N.; Speyer, DE, Cambrian fans, J. Eur. Math. Soc., 11, 2, 407-447 (2009) · Zbl 1213.20038
[195] Rote, G., Santos, F., Streinu, I.: Expansive motions and the polytope of pointed pseudo-triangulations. In: Discrete and Computational Geometry, pp. 699-736. Algorithms Combin., 25. Springer, Berlin (2003) · Zbl 1077.52503
[196] Rote, G., Santos, F., Streinu, I.: Pseudo-triangulations: a survey. In: Surveys on Discrete and Computational Geometry, pp. 343-410. Contemp. Math., 453. Amer. Math. Soc., Providence, RI (2008) · Zbl 1169.05027
[197] Reiner, V.; Ziegler, GM, Coxeter-associahedra, Mathematika, 41, 2, 364-393 (1994) · Zbl 0822.52007
[198] Sack, A.: A realization of poset associahedra. arXiv:2301.11449 (2023)
[199] Salvatori, G.: 1-loop amplitudes from the Halohedron. J. High Energy Phys. 2019(12), Art. No. 74, 16 pp. (2019)
[200] Saneblidze, S., The bitwisted Cartesian model for the free loop fibration, Topol. Appl., 156, 5, 897-910 (2009) · Zbl 1181.55009
[201] Schoute, P.H.: Analytical Treatment of the Polytopes Regularly Derived from the Regular Polytopes. Section I: The Simplex. Volume 11 (1911) · JFM 44.0624.04
[202] Schiffler, R., Quiver Representations. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (2014), Cham: Springer, Cham · Zbl 1310.16015
[203] Seidel, P.: Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008) · Zbl 1159.53001
[204] Shephard, GC, Decomposable convex polyhedra, Mathematika, 10, 89-95 (1963) · Zbl 0121.39002
[205] Stanley, RP; Pitman, J., A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom., 27, 4, 603-634 (2002) · Zbl 1012.52019
[206] Shnider, S., Sternberg, S.: Quantum Groups: From Coalgebras to Drinfeld Algebras. Graduate Texts in Mathematical Physics, II. International Press, Cambridge, MA (1993) · Zbl 0845.17015
[207] Serrano, L., Stump, C.: Maximal fillings of moon polyominoes, simplicial complexes, and Schubert polynomials. Electron. J. Combin. 19(1), Paper 16, 18 pp. (2012) · Zbl 1244.05239
[208] Salvatori, G., Stanojevic, S.: Scattering amplitudes and simple canonical forms for simple polytopes. J. High Energy Phys. 2021(3), Art. No. 67, 24 pp. (2021) · Zbl 1461.81135
[209] Santos, F., Stump, C., Welker, V.: Noncrossing sets and a Grassmann associahedron. Forum Math. Sigma 5, e5, 49 pp. (2017) · Zbl 1362.52007
[210] Stasheff, JD, Homotopy associativity of H-spaces I & II, Trans. Amer. Math. Soc., 108, 2, 275-312 (1963) · Zbl 0114.39402
[211] Stasheff, J: From operads to “physically” inspired theories. In: Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), pp. 53-81. Contemp. Math., 202. Amer. Math. Soc., Providence, RI (1997) · Zbl 0872.55010
[212] Stasheff, J., What is \(\dots\) an operad?, Notes Amer. Math. Soc., 51, 6, 630-631 (2004) · Zbl 1151.18301
[213] Steinhaus, H., One Hundred Problems in Elementary Mathematics. With a foreword by Martin Gardner. (1964), Publishers, New York: Basic Books Inc., Publishers, New York · Zbl 1339.00001
[214] Stella, S., Polyhedral models for generalized associahedra via Coxeter elements, J. Algebraic Combin., 38, 1, 121-158 (2013) · Zbl 1268.05242
[215] Street, R.: Parenthetic remarks. In: Associahedra, Tamari Lattices and Related Structures, pp. 251-268. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1283.18009
[216] Sleator, DD; Tarjan, RE; Thurston, WP, Rotation distance, triangulations, and hyperbolic geometry, J. Amer. Math. Soc., 1, 3, 647-681 (1988) · Zbl 0653.51017
[217] Stump, C., A new perspective on \(k\)-triangulations, J. Combin. Theory Ser. A, 118, 6, 1794-1800 (2011) · Zbl 1228.05296
[218] Saneblidze, S.; Umble, R., Diagonals on the permutahedra, multiplihedra and associahedra, Homol. Homotopy Appl., 6, 1, 363-411 (2004) · Zbl 1069.55015
[219] Saneblidze, S.; Umble, R., Matrads, biassociahedra, and \(A_{\infty }\)-bialgebras, Homol. Homotopy Appl., 13, 1, 1-57 (2011) · Zbl 1222.55006
[220] Saneblidze, S., Umble, R.: Comparing diagonals on the associahedra. arXiv:2207.08543 (2022) · Zbl 1069.55015
[221] Tamari, D.: Monoides préordonnés et chaînes de Malcev. PhD thesis, Université Paris Sorbonne (1951) · Zbl 0055.01501
[222] Thomas, H.: The Tamari lattice as it arises in quiver representations. In: Associahedra, Tamari Lattices and Related Structures, pp. 281-291. Progr. Math., 299. Birkhäuser/Springer, Basel (2012) · Zbl 1264.16018
[223] Thomas, H., An introduction to the lattice of torsion classes, Bull. Iranian Math. Soc., 47, suppl. 1, S35-S55 (2021) · Zbl 1485.16010
[224] Thomas, H.: Harder-Narasimhan polytopes. Talk at the Simons Center Workshop on Combinatorics and Geometry of Convex Polyhedra, Stony Brook University, USA (2023). https://scgp.stonybrook.edu/video/video.php?id=5805
[225] Tonks, A.: Relating the associahedron and the permutohedron. In: Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), pp. 33-36. Contemp. Math., 202. Amer. Math. Soc., Providence, RI (1997) · Zbl 0873.51016
[226] Trotter, HF, Algorithm 115: Perm, Commun. ACM, 5, 8, 434-435 (1962)
[227] Vallette, B.: Algebra + homotopy = operad. In: Symplectic, Poisson, and Noncommutative Geometry, pp. 229-290. Math. Sci. Res. Inst. Publ., 62. Cambridge Univ. Press, New York (2014) · Zbl 1335.18001
[228] Viennot, X.: Catalan tableaux and the asymmetric exclusion process. In: 19th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2007). Nankai University, Tianjin, China (2007)
[229] Williams, N., \(W\)-associahedra have the non-leaving-face property, Eur. J. Combin., 62, 272-285 (2017) · Zbl 1358.05061
[230] Woo, A.: Catalan numbers and Schubert polynomials for \(w=1(n+1)... 2\). arXiv:math/0407160 (2004)
[231] Zelevinsky, A., Nested complexes and their polyhedral realizations, Pure Appl. Math. Q., 2, 3, 655-671 (2006) · Zbl 1109.52010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.