×

The diagonal of the operahedra. (English) Zbl 1498.52021

The paper introduces a general theory of coherent cellular approximations of the diagonal for families of polytopes. The results are applied to various classes of polytopes including associahedra and permutahedra. Compatible topological cellular operad structure on the Loday realizations of the operahedra is obtained providing a model for topological and algebraic homotopy operads and an explicit functorial formula for their tensor product. The fundamental hyperplane arrangement of a polytope plays an important role in the considerations.

MSC:

52B11 \(n\)-dimensional polytopes
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
52A27 Approximation by convex sets
18M70 Algebraic operads, cooperads, and Koszul duality

References:

[1] Aguiar, M.; Ardila, F., Hopf Monoids and Generalized Permutahedra, Memoirs of the American Mathematical Society (2022), in press
[2] Abouzaid, M., Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Sel. Math. New Ser., 15, 189-270 (2009) · Zbl 1204.14019
[3] Arias Abad, C.; Crainic, M., Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math., 248, 416-452 (2013) · Zbl 1284.55018
[4] Arias Abad, C.; Crainic, M.; Dherin, B., Tensor products of representations up to homotopy, J. Homotopy Relat. Struct., 6, 2, 239-288 (2011) · Zbl 1278.18029
[5] Basualdo Bonatto, L.; Chettih, S.; Linto, A.; Raynor, S.; Robertson, M.; Wahl, N., An infinity operad of normalized cacti, Topol. Appl., Article 108107 pp. (2022) · Zbl 1495.18024
[6] Berger, C., Combinatorial models of real configuration spaces and \(e_n\)-operads, Contemp. Math., 202, 37-52 (1997) · Zbl 0860.18001
[7] Billera, L., In Pursuit of a White Whale: On the Real Linear Algebra of Vectors of Zeros and Ones (2018), Berlin Mathematical School Friday Colloquium
[8] Barnard, E.; McConville, T., Lattices from graph associahedra and subalgebras of the Malvenuto-Reutenauer algebra, Algebra Univers., 82, 1, 1-53 (2021) · Zbl 1484.06021
[9] Batanin, M.; Markl, M.; Obradović, J., Minimal models for graphs-related operadic algebras (2020)
[10] Bottman, N., 2-Associahedra, Algebraic Geom. Topol., 19, 2, 743-806 (2019) · Zbl 1417.53093
[11] Billera, L. J.; Sturmfels, B., Fiber polytopes, Ann. Math. (2), 135, 3, 527-549 (1992) · Zbl 0762.52003
[12] Carr, M. P.; Devadoss, S. L., Coxeter complexes and graph-associahedra, Topol. Appl., 153, 12, 2155-2168 (2006) · Zbl 1099.52001
[13] Curien, P.-L.; Ivanović, J.; Obradović, J., Syntactic aspects of hypergraph polytopes, J. Homotopy Relat. Struct., 14, 235-279 (2019) · Zbl 1445.05074
[14] Drummond-Cole, G. C.; Poirier, K.; Rounds, N., Chain-level string topology operations (2015)
[15] Deza, A.; Manoussakis, G.; Onn, S., Primitive zonotopes, Discrete Comput. Geom., 60, 27-39 (2018) · Zbl 1406.52029
[16] Došen, K.; Petrić, Z., Hypergraph polytopes, Topol. Appl., 158, 1405-1444 (2011) · Zbl 1222.05193
[17] Deza, A.; Pournin, L.; Rakotonarivo, R., The vertices of primitive zonotopes, Contemp. Math., 764, 71-81 (2021) · Zbl 1468.52010
[18] Dehling, M.; Vallette, B., Symmetric homotopy theory for operads, Algebraic Geom. Topol., 21, 4, 1595-1660 (2015) · Zbl 1482.18013
[19] Eilenberg, S.; Mac Lane, S., On the groups \(H(\operatorname{\Pi}, n)\). II. Methods of computation, Ann. Math. (2), 60, 49-139 (1954) · Zbl 0055.41704
[20] Eilenberg, S.; Zilber, J. A., On products of complexes, Am. J. Math., 75, 200-204 (1953) · Zbl 0050.17301
[21] Friedman, G.; Medina-Mardones, A. M.; Sinha, D., Flowing from intersection product to cup product (2021)
[22] Forman, R., Morse theory for cell complexes, Adv. Math., 134, 1, 90-145 (1998) · Zbl 0896.57023
[23] Forcey, S., Convex hull realizations of the multiplihedra, Topol. Appl., 156, 2, 326-347 (2008) · Zbl 1158.55012
[24] Forcey, S.; Ronco, M., Algebraic structures on graph associahedra (2019), ArXiv e-prints
[25] Fulton, W.; Sturmfels, B., Intersection theory on toric varieties, Topology, 36, 335-353 (1997) · Zbl 0885.14025
[26] Feichtner, E. M.; Sturmfels, B., Matroid polytopes, nested sets and Bergman fans, Port. Math. (N. S.), 62, 4, 437-468 (2005) · Zbl 1092.52006
[27] Galashin, P., Poset associahedra (2021)
[28] Gaberdiel, M. R.; Zwiebach, B., Tensor constructions of open string theories. I. Foundations, Nucl. Phys. B, 505, 3, 569-624 (1997) · Zbl 0911.53044
[29] Harary, F., Graph Theory (1969), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Calif.-London · Zbl 0182.57702
[30] Hohlweg, C.; Lange, C., Realizations of the associahedron and cyclohedron, Discrete Comput. Geom., 37, 4, 517-543 (2007) · Zbl 1125.52011
[31] Kaufmann, R. M.; Medina-Mardones, A. M., A combinatorial \(E_\infty \)-algebra structure of cubical cochains (2021)
[32] Kapranov, M. M.; Voevodsky, V. A., Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), (International Category Theory Meeting, vol. 32. International Category Theory Meeting, vol. 32, Bangor, 1989 and Cambridge, 1990 (1991)), 11-27 · Zbl 0748.18010
[33] Kaufmann, R. M.; Zhang, Y., Permutohedral structures on \(E_2\)-operads, Forum Math., 29, 6, 1371-1411 (2017) · Zbl 1454.55010
[34] Loday, J.-L., Realization of the Stasheff polytope, Arch. Math. (Basel), 83, 3, 267-278 (2004) · Zbl 1059.52017
[35] Lipshitz, R.; Ozsváth, P.; Thurston, D. P., Diagonals and A-infinity tensor products (2020)
[36] Loday, J.-L.; Ronco, M., Permutads, J. Comb. Theory, Ser. A, 120, 2, 340-365 (2013) · Zbl 1258.05126
[37] Loday, J.-L.; Vallette, B., Algebraic Operads, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 346 (2012), Springer-Verlag: Springer-Verlag Berlin · Zbl 1260.18001
[38] Markl, M., Permutads via operadic categories, and the hidden associahedron, J. Comb. Theory, Ser. A, 175, Article 105277 pp. (2020) · Zbl 1479.18017
[39] Mazuir, T., Higher algebra of \(A_\infty\) and ΩBAs-algebras in Morse theory. I, II (2021)
[40] Milgram, R. J., Iterated loop spaces, Ann. Math., 84, 3, 386-403 (1966) · Zbl 0145.19901
[41] Medina-Mardones, A. M., An algebraic representation of globular sets, Homol. Homotopy Appl., 22, 2, 135-150 (2020) · Zbl 1440.55014
[42] McClure, J. E.; Smith, J. H., Multivariable cochain operations and little n-cubes, J. Am. Math. Soc., 16, 3, 681-704 (2003) · Zbl 1014.18005
[43] Markl, M.; Shnider, S., Associahedra, cellular W-construction and products of \(A_\infty \)-algebras, Trans. Am. Math. Soc., 358, 6, 2353-2372 (2006), (electronic) · Zbl 1093.18005
[44] Masuda, N.; Thomas, H.; Tonks, A.; Vallette, B., The diagonal of the associahedra, J. Éc. Polytech., 8, 121-146 (2021) · Zbl 1455.18014
[45] Obradović, J., Combinatorial homotopy theory for operads (2019)
[46] Oeis, The on-line encyclopedia of integer sequences, Published electronically at · Zbl 1274.11001
[47] Pilaud, V., Signed tree associahedra (2013) · Zbl 1394.52012
[48] Pilaud, V., Which nestohedra are removahedra?, Rev. Colomb. Mat., 51, 1, 21-42 (2014) · Zbl 1384.52005
[49] Pilaud, V., Peeble trees (2022)
[50] Poliakova, D., Cellular chains on freehedra and operadic pairs (2020)
[51] Postnikov, A., Permutohedra, associahedra, and beyond, Int. Math. Res. Not., 6, 1026-1106 (2009) · Zbl 1162.52007
[52] Prouté, A., \( A_\infty \)-structures, modèle minimal de Baues-Lemaire et homologie des fibrations (1986), Ph.D. Thesis
[53] Poirier, K.; Tradler, T., The combinatorics of directed planar trees, J. Comb. Theory, Ser. A, 160, 31-61 (2018) · Zbl 1394.05021
[54] Poirier, K.; Tradler, T., Koszuality of the \(\mathcal{V}^{( d )}\) dioperad, J. Homotopy Relat. Struct., 14, 477-507 (2019) · Zbl 1429.16020
[55] Romero, A.; Sergeraert, F., The Eilenberg-Zilber theorem via discrete vector fields (2019), Preprint, Available online at
[56] Seidel, P., Fukaya Categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathematics (2008), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1159.53001
[57] Serre, J.-P., Homologie singulière des espaces fibrés. Applications, Ann. Math. (2), 54, 425-505 (1951) · Zbl 0045.26003
[58] Stasheff, J. D., Homotopy associativity of H-spaces. I, II, Trans. Am. Math. Soc., 108, 275-292 (1963); Stasheff, J. D., Trans. Am. Math. Soc., 108, 293-312 (1963) · Zbl 0114.39402
[59] Stasheff, J. D., H-Spaces from a Homotopy Point of View, Lecture Notes in Mathematics, vol. 161 (1970), Springer-Verlag: Springer-Verlag Berlin · Zbl 0205.27701
[60] Saneblidze, S.; Umble, R., Diagonals on the permutahedra, multiplihedra and associahedra, Homol. Homotopy Appl., 6, 1, 363-411 (2004) · Zbl 1069.55015
[61] Tamari, D., Monoïdes préordonnés et chaînes de Malcev (1951), Paris, Thèse de Mathématique · Zbl 0055.01501
[62] Tata, S., Geometrically interpreting higher cup products and application to combinatorial pin structures (2020)
[63] Thorngren, R. G., Combinatorial topology and applications to quantum field theory (2018), UC Berkeley, Available online at
[64] Tonks, A., Relating the associahedron and the permutohedron, Contemp. Math., 202, 33-36 (1997) · Zbl 0873.51016
[65] Van der Laan, P., Coloured Koszul duality and strongly homotopy operads (2003)
[66] Vejdemo-Johansson, M., Enumerating the Saneblidze-Umble diagonal terms (2007)
[67] Ward, B., Massey products for graph homology, Int. Math. Res. Not., 2022, 11, 8086-8161 (2022) · Zbl 1493.18020
[68] Ziegler, G. M., Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.