×

From quantum curves to topological string partition functions. (English) Zbl 1522.81336

Summary: This paper describes the reconstruction of the topological string partition function for certain local Calabi-Yau (CY) manifolds from the quantum curve, an ordinary differential equation obtained by quantising their defining equations. Quantum curves are characterised as solutions to a Riemann-Hilbert problem. The isomonodromic tau-functions associated to these Riemann-Hilbert problems admit a family of natural normalisations labelled by the chambers in the extended Kähler moduli space of the local CY under consideration. The corresponding isomonodromic tau-functions admit a series expansion of generalised theta series type from which one can extract the topological string partition functions for each chamber.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14H15 Families, moduli of curves (analytic)
35Q15 Riemann-Hilbert problems in context of PDEs
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
34M56 Isomonodromic deformations for ordinary differential equations in the complex domain
11F27 Theta series; Weil representation; theta correspondences

References:

[1] Aganagic, M.; Cheng, MCN; Dijkgraaf, R.; Krefl, D.; Vafa, C., Quantum geometry of refined topological strings, JHEP, 1211, 019 (2012) · Zbl 1397.83117
[2] Aganagic, M.; Dijkgraaf, R.; Klemm, A.; Marino, M.; Vafa, C., Topological strings and integrable hierarchies, Commun. Math. Phys., 261, 451-516 (2006) · Zbl 1095.81049
[3] Aganagic, M.; Klemm, A.; Marino, M.; Vafa, C., The topological vertex, Commun. Math. Phys., 254, 425-478 (2005) · Zbl 1114.81076
[4] Alvarez-Gaume, L.; Moore, G.; Vafa, C., Theta functions, modular invariance, and strings, Commun. Math. Phys., 106, 1-40 (1986) · Zbl 0605.58049
[5] Babelon, O.; Bernard, D.; Talon, M., Introduction to Classical Integrable Systems (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1045.37033
[6] Bao, L.; Pomoni, E.; Taki, M.; Yagi, F., M5-Branes, toric diagrams and Gauge theory duality, JHEP, 1204, 105 (2012) · Zbl 1348.81397
[7] Bershtein, MA; Shchechkin, AI, Bilinear equations on Painlevé \(\tau\) functions from CFT, Commun. Math. Phys., 339, 1021-1061 (2015) · Zbl 1332.34141
[8] Bonelli, G.; Grassi, A.; Tanzini, A., Seiberg-Witten theory as a Fermi gas, Lett. Math. Phys., 107, 1-30 (2017) · Zbl 1390.70067
[9] Bonelli, G.; Grassi, A.; Tanzini, A., New results in \({{\cal{N} }}=2\) theories from non-perturbative string, Ann. Henri Poincare, 19, 743-774 (2018) · Zbl 1386.81137
[10] Bonelli, G.; Lisovyy, O.; Maruyoshi, K.; Sciarappa, A.; Tanzini, A., On Painlevé/gauge theory correspondence, Lett. Math. Phys., 107, 2359-2413 (2017) · Zbl 1380.34130
[11] Bourton, T., Pomoni, E.: Instanton counting in Class \({\cal{S}}_k\), arXiv:1712.01288 [hep-th] · Zbl 1514.81227
[12] Cafasso, M.; Gavrylenko, P.; Lisovyy, O., Tau functions as Widom constants, Commun. Math. Phys., 365, 2, 741-772 (2019) · Zbl 1417.37245
[13] Cheng, MCN; Dijkgraaf, R.; Vafa, C., Non-perturbative topological strings and conformal blocks, JHEP, 1109, 022 (2011) · Zbl 1301.81195
[14] Chiang, T-M; Klemm, A.; Yau, S-T; Zaslow, E., Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys., 3, 495-565 (1999) · Zbl 0976.32012
[15] Coman, I., Longhi, P., Teschner, J.: From quantum curves to topological string partition functions II, Preprint arXiv:2004.04585
[16] Coman, I.; Pomoni, E.; Taki, M.; Yagi, F., Spectral curves of \({\cal{N} } = 1\) theories of class \({{\cal{S} }}_k \), JHEP, 1706, 136 (2017) · Zbl 1380.81306
[17] Coman, I.; Pomoni, E.; Teschner, J., Trinion conformal blocks from topological strings, J. High Energy Phys., 2020, 78 (2020) · Zbl 1454.83128
[18] Diaconescu, DE; Donagi, R.; Pantev, T., Intermediate Jacobians and ADE Hitchin systems, Math. Res. Lett., 14, 745-756 (2007) · Zbl 1135.32300
[19] Diaconescu, D-E; Dijkgraaf, R.; Donagi, R.; Hofman, C.; Pantev, T., Geometric transitions and integrable systems, Nuclear Phys. B, 752, 329-390 (2006) · Zbl 1215.14048
[20] Dijkgraaf, R.; Vafa, C., Matrix models, topological strings, and supersymmetric gauge theories, Nucl. Phys. B, 644, 3 (2002) · Zbl 0999.81068
[21] Dijkgraaf, R., Vafa, C.: Toda theories, matrix models, topological strings and \(N = 2\) Gauge systems, arXiv:0909.2453 · Zbl 0999.81068
[22] Dijkgraaf, R.; Hollands, L.; Sulkowski, P.; Vafa, C., Supersymmetric Gauge theories, intersecting branes and free fermions, JHEP, 0802, 106 (2008)
[23] Dijkgraaf, R.; Hollands, L.; Sulkowski, P., Quantum curves and D-modules, JHEP, 0911, 047 (2009)
[24] Dubrovin, B.; Mazzocco, M., Canonical structure and symmetries of the Schlesinger equations, Commun. Math. Phys., 271, 289-373 (2007) · Zbl 1146.32005
[25] Eguchi, T.; Kanno, H., Topological strings and Nekrasov’s formulas, JHEP, 0312, 006 (2003)
[26] Eynard, B.: A short overview of the “Topological recursion”. Proceedings of the ICM 2014, arXiv:1412.3286 · Zbl 1373.14029
[27] Felder, G.; Müller-Lennert, M., Analyticity of Nekrasov partition functions, Commun. Math. Phys., 364, 683-718 (2018) · Zbl 1400.81138
[28] Friedan, D.; Shenker, S., The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B, 281, 509-545 (1987)
[29] Gaiotto, D., \(N=2\) dualities, JHEP, 1208, 034 (2012)
[30] Gaiotto, D.; Moore, GW; Neitzke, A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math., 234, 239-403 (2013) · Zbl 1358.81150
[31] Gamayun, O.; Iorgov, N.; Lisovyy, O., Conformal field theory of Painlevé VI, J. High Energy Phys., 10, 038 (2012) · Zbl 1397.81307
[32] Gavrylenko, P., Lisovyy, O.: Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions. Commun. Math. Phys. 363, 1-58 (2018). arXiv:1608.00958v2 · Zbl 1414.34072
[33] Gavrylenko, P.; Marshakov, A., Free fermions, W-algebras and isomonodromic deformations, Theor. Math. Phys., 187, 649-677 (2016) · Zbl 1346.81118
[34] Gaiotto, D.; Moore, GW; Neitzke, A., Spectral networks, Ann. Henri Poincare, 14, 1643-1731 (2013) · Zbl 1288.81132
[35] Goldman, W.: Trace Coordinates on Fricke spaces of some simple hyperbolic surfaces. Handbook of Teichmüller theory. Vol. II, 611-684, IRMA Lect. Math. Theor. Phys., 13, Eur. Math. Soc., Zürich (2009) · Zbl 1175.30043
[36] Gorsky, A.; Nekrasov, N.; Rubtsov, V., Hilbert schemes, separated variables, and D-branes, Commun. Math. Phys., 222, 299-318 (2001) · Zbl 0985.81107
[37] Grassi, A.; Hatsuda, Y.; Marino, M., Topological strings from quantum mechanics, Ann. Henri Poincare, 17, 3177-3235 (2016) · Zbl 1365.81094
[38] Gukov, S.; Sulkowski, P., A-polynomial, B-model, and Quantization, JHEP, 1202, 070 (2012) · Zbl 1309.81220
[39] Hitchin, NJ, Stable bundles and integrable systems, Duke Math. J., 54, 91-114 (1987) · Zbl 0627.14024
[40] Hollands, L.; Kidwai, O., Higher length-twist coordinates, generalized Heun’s opers, and twisted superpotentials, Adv. Theor. Math. Phys., 22, 1713-1822 (2018) · Zbl 07430956
[41] Hollands, L.; Neitzke, A., Spectral networks and Fenchel-Nielsen coordinates, Lett. Math. Phys., 106, 811-877 (2016) · Zbl 1345.32020
[42] Hollowood, TJ; Iqbal, A.; Vafa, C., Matrix models, geometric engineering and elliptic genera, JHEP, 0803, 069 (2008)
[43] Hurtubise, JC, Integrable systems and algebraic surfaces, Duke Math. J., 83, 19-50 (1996) · Zbl 0857.58024
[44] Iqbal, A.; Kashani-Poor, AK, Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys., 7, 457 (2003) · Zbl 1044.32022
[45] Iqbal, A.; Kashani-Poor, AK, SU(N) geometries and topological string amplitudes, Adv. Theor. Math. Phys., 10, 1 (2006) · Zbl 1101.81088
[46] Iqbal, A.; Kashani-Poor, AK, The vertex on a strip, Adv. Theor. Math. Phys., 10, 317 (2006) · Zbl 1131.14045
[47] Iwaki, K., Koike, T., Takei, Y.: Voros coefficients for the hypergeometric differential equations and Eynard-Orantin’s topological recursion. J. Integrable Syst. 4, xyz004 (2019). arXiv:1810.02946
[48] Iwasaki, K., Kimura, H., Shimomura, S., Yoshida, M.: From Gauss to Painlevé, a Modern Theory of Special Functions, vol E 16. Aspects of Mathematics (1991) · Zbl 0743.34014
[49] Its, A., Lisovyy, O., Prokhorov, A.: Monodromy dependence and connection formulae for isomonodromic tau functions. Duke Math. J. 167, 1347-1432 (2018). arXiv:1604.03082 · Zbl 1396.33039
[50] Iorgov, N.; Lisovyy, O.; Teschner, J., Isomonodromic tau-functions from Liouville conformal blocks, Commun. Math. Phys., 336, 671-694 (2015) · Zbl 1311.30029
[51] Intriligator, KA; Seiberg, N., Phases of N=1 supersymmetric gauge theories in four-dimensions, Nucl. Phys. B, 431, 551 (1994) · Zbl 1020.81903
[52] Katz, SH; Klemm, A.; Vafa, C., Geometric engineering of quantum field theories, Nucl. Phys. B, 497, 173-195 (1997) · Zbl 0935.81058
[53] Katz, S.; Mayr, P.; Vafa, C., Mirror symmetry and exact solution of 4D N = 2 gauge theories. I, Adv. Theor. Math. Phys., 1, 53-114 (1997) · Zbl 0912.32016
[54] Konishi, Y.; Minabe, S., Flop invariance of the topological vertex, Int. J. Math., 19, 27-45 (2008) · Zbl 1157.14041
[55] Krichever, IM, Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl., 11, 1, 12-26 (1977) · Zbl 0368.35022
[56] Krichever, IM, Methods of algebraic geometry in the theory of non-linear equations, Russ. Math. Surv., 32, 6, 185-213 (1977) · Zbl 0386.35002
[57] Krichever, I., Vector bundles and Lax equations on algebraic curves, Commun. Math. Phys., 229, 229-269 (2002) · Zbl 1073.14048
[58] Losev, A.S., Marshakov, A.V., Nekrasov, N.A.: Small instantons, little strings and free fermions. In: Shifman, M., et al. (eds.) From Fields to Strings: Circumnavigating Theoretical Physics, vol. 1, pp. 581-621. World Science Publication, Singapore (2005), arXiv:hep-th/0302191 · Zbl 1081.81103
[59] Manabe, M.; Sulkowski, P., Quantum curves and conformal field theory, Phys. Rev. D, 95, 12, 126003 (2017)
[60] Mitev, V.; Pomoni, E., 2D CFT blocks for the 4D class \({\cal{S} }_k\) theories, JHEP, 1708, 009 (2017) · Zbl 1381.81120 · doi:10.1007/JHEP08(2017)009
[61] Moore, GW, Geometry of the string equations, Commun. Math. Phys., 133, 261-304 (1990) · Zbl 0727.35134
[62] swn-plotter. http://www.ma.utexas.edu/users/neitzke/mathematica/swn-plotter.nb
[63] Nekrasov, NA, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864 (2003) · Zbl 1056.81068
[64] Nekrasov, N.A., Okounkov, A.: Seiberg-Witten theory and random partitions. The Unity of Mathematics, pp. 525-596. Progress in Mathematics, vol. 244. Birkhäuser Boston, Boston (2006), arXiv:hep-th/0306238 · Zbl 1233.14029
[65] Okamoto, K., Isomonodromic and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo, Sect. IA Math, 33, 575-618 (1986) · Zbl 0631.34011
[66] Okounkov, A.; Pandharipande, R., The equivariant Gromov-Witten theory of \(P^1\), Ann. Math., 163, 561-605 (2006) · Zbl 1105.14077
[67] Okounkov, A.: Noncommutative geometry of random surfaces, arXiv:0907.2322 · Zbl 1078.14082
[68] Okounkov, A.; Rains, E., Noncommutative geometry and Painlevé equations, Algebra Number Theory, 9, 1363-1400 (2015) · Zbl 1329.14012
[69] Palmer, J., Determinants of Cauchy-Riemann operators as \(\tau \)-functions, Acta Appl. Math., 18, 199-223 (1990) · Zbl 0708.35063
[70] Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo 1982), vol. 81. North-Holland Math. Stud., Amsterdam, pp. 259-271 (1983) · Zbl 0528.58020
[71] Sato, M.; Miwa, T.; Jimbo, M., Holonomic quantum fields. II—the Riemann-Hilbert problem, Publ. RIMS Kyoto Univ., 15, 201-278 (1979) · Zbl 0433.35058
[72] Segal, G.; Wilson, G., Loop groups and equations of KdV type, Publ. Math. IHES, 61, 5-65 (1985) · Zbl 0592.35112
[73] Sklyanin, E., Separation of variables in the Gaudin model, J. Sov. Math., 47, 2473-2488 (1989) · Zbl 0692.35107
[74] Smith, I., Quiver algebras as Fukaya categories, Geom. Topol., 19, 2557-2617 (2015) · Zbl 1328.53109
[75] Teschner, J.: A guide to conformal field theory. Les Houches Lect. Notes 106 (2019), arXiv:1708.00680
[76] Teschner, J.: Quantisation conditions of the quantum Hitchin system and the real geometric Langlands correspondence. In: Andersen, J.E., Dancer, A., García-Prada, O. (eds.) Geometry and Physics: A Festschrift in honour of Nigel Hitchin. Oxford University Press (2018), arXiv:1707.07873
[77] Ueno, K.; Nishizawa, M., Multiple gamma functions and multiple q-gamma functions, Publ. RIMS Kyoto Univ., 33, 813-838 (1997) · Zbl 0907.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.