×

Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity. (English. French summary) Zbl 1426.74047

The notion of polyconvexity was introduced into the context of nonlinear elasticity theory by John Ball [Arch. Ration. Mech. Anal. 63, 337–403 (1977; Zbl 0368.73040); Nonlin. Anal. Mech., Heriot-Watt Symp., Edinburgh 1976, Vol. I, 187–241 (1977; Zbl 0377.73043)]. On the other hand, rank-one convexity plays an important role in the existence and uniqueness theory for linear elastostatics and elastodynamics.
In this work, the authors study the relation between rank-one convexity and polyconvexity of objective and isotropic functions \(W\) on \(SL(2)= \{X\in \mathbb{R}^{2\times 2},\det X= 1\}\). These convexity properties play an important role in the theory of nonlinear hyperelasticity, where \(W(\nabla\varphi)\) is interpreted as the energy density of a deformation \(\varphi\). In particular, energy functions on the domain \(SL(2)\) are used for modelling of incompressible materials, since, in this case, the deformation \(\varphi\) is subjected to an additional constraint \(\det(\nabla\varphi)= 1\).
This work is interesting and may find readers working in the area of nonlinear hyperelasticity.

MSC:

74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
26B25 Convexity of real functions of several variables, generalizations

References:

[1] Abeyaratne, R. C., Discontinuous deformation gradients in plane finite elastostatics of incompressible materials, J. Elast., 10, 3, 255-293, (1980) · Zbl 0486.73031
[2] Alibert, J. J.; Dacorogna, B., An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Ration. Mech. Anal., 117, 2, 155-166, (1992) · Zbl 0761.26009
[3] Annaidh, A. N.; Destrade, M.; Gilchrist, M. D.; Murphy, J. G., Deficiencies in numerical models of anisotropic nonlinearly elastic materials, Biomech. Model. Mechanobiol., 12, 4, 781-791, (2012)
[4] Aubert, G., Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2, J. Elast., 39, 1, 31-46, (1995) · Zbl 0828.73015
[5] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 4, 337-403, (1976) · Zbl 0368.73040
[6] Ball, J. M., Constitutive inequalities and existence theorems in nonlinear elastostatics, (Knops, R. J., Herriot Watt Symposion: Nonlinear Analysis and Mechanics, vol. 1, (1977), Pitman London), 187-238 · Zbl 0377.73043
[7] Ball, J. M.; Murat, F., \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58, 225-253, (1984) · Zbl 0549.46019
[8] Chaudhuri, N.; Müller, S., Rank-one convexity implies quasi-convexity on certain hypersurfaces, Proc. R. Soc. Edinb., Sect. A, 133, 06, 1263-1272, (2003) · Zbl 1054.49018
[9] Conti, S., Quasiconvex functions incorporating volumetric constraints are rank-one convex, J. Math. Pures Appl., 90, 1, 15-30, (2008) · Zbl 1146.49009
[10] Dacorogna, B., Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension, Discrete Contin. Dyn. Syst., 1, 2, 257-263, (2001) · Zbl 1055.35045
[11] Dacorogna, B., Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, (2008), Springer Berlin · Zbl 1140.49001
[12] Davies, P. J., A simple derivation of necessary and sufficient conditions for the strong ellipticity of isotropic hyperelastic materials in plane strain, J. Elast., 26, 3, 291-296, (1991) · Zbl 0759.73013
[13] Dunn, J. E.; Fosdick, R.; Zhang, Y., Rank 1 convexity for a class of incompressible elastic materials, (Rational Continua, Classical and New, (2003), Springer), 89-96
[14] Edelstein, W.; Fosdick, R., A note on non-uniqueness in linear elasticity theory, Z. Angew. Math. Phys., 19, 6, 906-912, (1968) · Zbl 0172.49803
[15] Ernst, E., Ellipticity loss in isotropic elasticity, J. Elast., 51, 3, 203-211, (1998) · Zbl 0927.74007
[16] Fosdick, R.; Piccioni, M. D.; Puglisi, G., A note on uniqueness in linear elastostatics, J. Elast., 88, 1, 79-86, (2007) · Zbl 1115.74023
[17] Horgan, C.; Murphy, J., Constitutive modeling for moderate deformations of slightly compressible rubber, J. Rheol., 53, 153, (2009)
[18] Knowles, J. K.; Sternberg, E., On the ellipticity of the equations of nonlinear elastostatics for a special material, J. Elast., 5, 3-4, 341-361, (1975) · Zbl 0323.73010
[19] Knowles, J. K.; Sternberg, E., On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63, 4, 321-336, (1976) · Zbl 0351.73061
[20] Marcellini, P., Quasiconvex quadratic forms in two dimensions, Appl. Math. Optim., 11, 1, 183-189, (1984) · Zbl 0567.49007
[21] Martin, R. J.; Ghiba, I. D.; Neff, P., Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case, Proc. R. Soc. Edinb. A, 147, 3, 571-597, (2015), 2017 · Zbl 1369.74016
[22] Mielke, A., Necessary and sufficient conditions for polyconvexity of isotropic functions, J. Convex Anal., 12, 2, 291-314, (2005) · Zbl 1098.49013
[23] Mora-Corral, C.; Strugaru, M., Necking in two-dimensional incompressible polyconvex materials: theoretical framework and numerical simulations, Q. J. Mech. Appl. Math., 70, 3, 249-271, (2017) · Zbl 1457.74174
[24] Morrey, C. B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pac. J. Math., 2, 1, 25-53, (1952) · Zbl 0046.10803
[25] Müller, S., Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Not., 1999, 20, 1087-1095, (1999) · Zbl 1055.49506
[26] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form, J. Elast., 115, 1, 1-25, (2014) · Zbl 1302.35254
[27] Neff, P., Critique of “two-dimensional examples of rank-one convex functions that are not quasiconvex” by M.K. benaouda and J.J. telega, Ann. Pol. Math., 86, 2, 193-195, (2005) · Zbl 1075.49503
[28] Neff, P.; Ghiba, I. D.; Lankeit, J., The exponentiated hencky-logarithmic strain energy. part I: constitutive issues and rank-one convexity, J. Elast., 121, 143-234, (2015) · Zbl 1325.74028
[29] Neff, P.; Ghiba, I. D.; Lankeit, J.; Martin, R. J.; Steigmann, D. J., The exponentiated hencky-logarithmic strain energy. part II: coercivity, planar polyconvexity and existence of minimizers, Z. Angew. Math. Phys., 66, 1671-1693, (2015) · Zbl 1320.74022
[30] Ogden, R. W., Non-linear elastic deformations, Mathematics and Its Applications, (1983), Ellis Horwood Chichester
[31] Pedregal, P., Some remarks on quasiconvexity and rank-one convexity, Proc. R. Soc. Edinb., Sect. A, 126, 05, 1055-1065, (1996) · Zbl 0867.49012
[32] Pedregal, P., Some evidence in favor of Morrey’s conjecture, (2014), preprint
[33] Pedregal, P.; Sverak, V., A note on quasiconvexity and rank-one convexity for \(2 \times 2\) matrices, J. Convex Anal., 5, 107-117, (1998) · Zbl 0918.49012
[34] Raoult, A., Non-polyconvexity of the stored energy function of a st. Venant-Kirchhoff material, Apl. Mat., 31, 417-419, (1986) · Zbl 0608.73023
[35] Richter, H., Das isotrope elastizitätsgesetz, Z. Angew. Math. Mech., 28, 7-8, 205-209, (1948), available at · Zbl 0033.22402
[36] Rosakis, P., Characterization of convex isotropic functions, J. Elast., 49, 257-267, (1997) · Zbl 0906.73018
[37] Rosakis, P.; Simpson, C. H., On the relation between polyconvexity and rank-one convexity in nonlinear elasticity, J. Elast., 37, 2, 113-137, (1994) · Zbl 0817.73009
[38] Sansour, C., On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A, Solids, 27, 1, 28-39, (2008) · Zbl 1129.74009
[39] Schröder, J.; Neff, P., Poly, quasi and rank-one convexity in mechanics, CISM-Course Udine, (2009), Springer
[40] Serre, D., Formes quadratiques et calcul des variations, J. Math. Pures Appl., 62, 9, 177-196, (1983) · Zbl 0529.49005
[41] Šilhavý, M., The mechanics and thermomechanics of continuous media, (1997), Springer Berlin · Zbl 0870.73004
[42] Šilhavý, M., Convexity conditions for rotationally invariant functions in two dimensions, (Sequeira; etal., Applied Nonlinear Analysis, (1999), Kluwer Academic Publisher New York) · Zbl 0959.26008
[43] Šilhavý, M., On isotropic rank one convex functions, Proc. R. Soc. Edinb., 129, 1081-1105, (1999) · Zbl 0945.26018
[44] Šilhavý, M., Rank 1 convex hulls of isotropic functions in dimension 2 by 2, Math. Bohem., 126, 2, 521-529, (2001) · Zbl 1070.49008
[45] Šilhavỳ, M., Convexity conditions for rotationally invariant functions in two dimensions, (Applied Nonlinear Analysis, (2002), Springer), 513-530 · Zbl 0959.26008
[46] Šilhavý, M., Monotonicity of rotationally invariant convex and rank 1 convex functions, Proc. R. Soc. Edinb., 132, 419-435, (2002) · Zbl 1035.49006
[47] Šilhavý, M., An \(\operatorname{O}(n)\) invariant rank 1 convex function that is not polyconvex, Theor. Appl. Mech. (Belgrad), 28, 325-336, (2002) · Zbl 1055.26006
[48] Šilhavý, M., On \(\operatorname{SO}(n)\)-invariant rank 1 convex functions, J. Elast., 71, 235-246, (2003) · Zbl 1077.49021
[49] Sverak, V., Rank-one convexity does not imply quasiconvexity, Proc. R. Soc. Edinb. A, 120, 185-189, (1992) · Zbl 0777.49015
[50] Terpstra, F. J., Die darstellung biquadratischer formen als summen von quadraten mit anwendung auf die variationsrechnung, Math. Ann., 116, 1, 166-180, (1939) · Zbl 0019.35203
[51] Zee, L.; Sternberg, E., Ordinary and strong ellipticity in the equilibrium theory of incompressible hyperelastic solids, Arch. Ration. Mech. Anal., 83, 53-90, (1983) · Zbl 0553.73011
[52] Zubov, L. M.; Rudev, A. N., Necessary and sufficient criteria for ellipticity of the equilibrium equations of a non-linearly elastic medium, J. Appl. Math. Mech., 59, 2, 197-208, (1995) · Zbl 0905.73012
[53] Zubov, L. M.; Rudev, A. N., A criterion for the strong ellipticity of the equilibrium equations of an isotropic nonlinearly elastic material, J. Appl. Math. Mech., 75, 432-446, (2011) · Zbl 1272.74050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.