×

Malliavin calculus for marked binomial processes and applications. (English) Zbl 1511.60079

Summary: We develop stochastic analysis tools for marked binomial processes (MBP) that are the discrete analogues of the marked Poisson processes. They include in particular: (i) the statement of a chaos decomposition for square-integrable functionals of MBP, (ii) the design of a tailor-made Malliavin calculus of variations, (iii) the statement of the analogues of Stroock’s, Clark’s and Mehler’s formulas. We provide our formalism with two applications: (App1) studying the (compound) Poisson approximation of MBP functional by combining it with the Chen-Stein method and (App2) solving an optimal hedging problem in the trinomial model.

MSC:

60H07 Stochastic calculus of variations and the Malliavin calculus
60F05 Central limit and other weak theorems
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60J74 Jump processes on discrete state spaces
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI

References:

[1] R. Arratia, L. Goldstein, and L. Gordon. Two moments suffice for Poisson approximations: the Chen-Stein method. The Annals of Probability, 17(1):9-25, 1989. · Zbl 0675.60017
[2] R. Arratia, L. Goldstein, and L. Gordon. Poisson approximation and the Chen-Stein method. Statistical Science, pages 403-424, 1990.
[3] S. Attal, J. Deschamps, and C. Pellegrini. Complex obtuse random walks and their continuous-time limits. Probability Theory and Related Fields, 165(1):65-116, 2016. · Zbl 1406.60067
[4] S. Attal and M. Émery. Équations de structure pour des martingales vectorielles. In Séminaire de Probabilités XXVIII, pages 256-278. Springer, 1994. · Zbl 0814.60040
[5] A. Barbour and L. H. Chen. An introduction to Stein’s method, volume 4 of Lecture Notes Series. National University of Singapore, 2005. · Zbl 1072.62007
[6] A. Barbour, L. H. Chen, and W.-L. Loh. Compound Poisson approximation for nonnegative random variables via Stein’s method. The Annals of Probability, pages 1843-1866, 1992. · Zbl 0765.60015
[7] A. Barbour and O. Chryssaphinou. Compound Poisson approximation: a user’s guide. Annals of Applied Probability, pages 964-1002, 2001. · Zbl 1018.60051
[8] A. Barbour, L. Holst, and S. Janson. Poisson approximation. The Clarendon Press Oxford Univ., 1992. · Zbl 0746.60002
[9] A. Barbour and S. Utev. Solving the Stein equation in compound Poisson approximation. Advances in Applied Probability, pages 449-475, 1998. · Zbl 0982.62007
[10] K. Bichteler. Malliavin calculus for processes with jumps. Stochastics Monographs, 1987. · Zbl 0706.60057
[11] S. Bobkov, F. Götze, and H. Sambale. Higher order concentration of measure. Communications in Contemporary Mathematics, 21(03):1850043, 2019. · Zbl 1447.60049
[12] L. H. Chen. On the convergence of Poisson binomial to Poisson distr. Ann. of Proba., 2(1):178-180, 1974. · Zbl 0276.60024
[13] H. Chernoff. A note on an inequality involving the Normal distribution. Ann. of Prob., 533-535,1981. · Zbl 0457.60014
[14] R. Dalang, A. Morton, and W. Willinger. Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stochastics: An Int. Journal of Prob. and Sto. Pr., 29(2):185-201, 1990. · Zbl 0694.90037
[15] L. Decreusefond and H. Halconruy. Malliavin and Dirichlet structures for independent random variables. Stochastic Processes and their Applications, 129(8):2611-2653, Aug 2019. · Zbl 1422.60092
[16] L. Decreusefond, M. Schulte, and C. Thäle. Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. of Proba., 44(3):2147-2197, 2016. · Zbl 1347.60027
[17] C. Döbler, G. Peccati, et al. The fourth moment theorem on the Poisson space. The Annals of Probability, 46(4):1878-1916, 2018. · Zbl 1431.60022
[18] M. Duerinckx. On the size of chaos via Glauber calculus in the classical mean-field dynamics. Communications in Mathematical Physics, 382(1):613-653, 2021. · Zbl 1466.35279
[19] M. Duerinckx, A. Gloria, and F. Otto. The structure of fluctuations in stochastic homogenization. Communications in Mathematical Physics, pages 1-48, 2020.
[20] T. Erhardsson. Stein’s method for Poisson and compound Poisson. An introduction to Stein’s method, 4.
[21] I. Flint, N. Privault, and G. L. Torrisi. Functional inequalities for marked point processes. Electronic Journal of Probability, 24:1-40, 2019. · Zbl 1430.60046
[22] I. Flint, N. Privault, and Giovanni L. Torrisi. Bounds in total variation distance for discrete-time processes on the sequence space. Potential Analysis, 52(2):223-243, 2020. · Zbl 1480.60204
[23] H. Föllmer and M. Schweizer. Hedging of contingent claims under incomplete information. Applied stochastic analysis, 5(389-414):19-31, 1991.
[24] H. Föllmer and D. Sondermann. Hedging of non-redundant contingent claims. 1985.
[25] U. Franz and T. Hamdi. Stochastic analysis for obtuse random walks. Journal of Theoretical Probability, 28(2):619-649, 2015. · Zbl 1323.60062
[26] M. Geske, A. Godbole, A. Schaffner, A. Skolnick, and G. Wallstrom. Compound Poisson approximations for word patterns under markovian hypotheses. Journal of applied probability, pages 877-892, 1995. · Zbl 0843.60025
[27] H. Halconruy. The insider problem in the trinomial model: a discrete-time jump process approach. arXiv preprint 2106.15208, 2021.
[28] I. Karatzas, D. L. Ocone, and J. L. Jinlu. An extension of Clark’s formula. Stochastics: An International Journal of Probability and Stochastic Processes, 37(3):127-131, 1991. · Zbl 0745.60056
[29] R. Lachièze-Rey and G. Peccati. Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics. Stoch. Proc. and App., 123(12):4186-4218, 2013. · Zbl 1294.60082
[30] G. Last. Stochastic analysis for Poisson processes. In Stoch. anal. for Poisson point proc. Springer, 2016.
[31] G. Last, G. Peccati, and M. Schulte. Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. August 2016. · Zbl 1347.60012
[32] G. Last and M. Penrose. Martingale representation for Poisson processes with applications to minimal variance hedging. Stochastic Processes and their Applications, 121(7):1588-1606, 2011. · Zbl 1219.60050
[33] G. Last and M. Penrose. Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2017.
[34] M. Métivier. Semimartingales, volume 2 of de Gruyter Studies in Mathematics, 1982. · Zbl 0503.60054
[35] J. Nash. Continuity of solutions of parabolic and elliptic equations. American Journal of Mathematics, 80(4):931-954, 1958. · Zbl 0096.06902
[36] I. Nourdin and G. Peccati. Noncentral convergence of multiple integrals. The Annals of Probability, 37(4):1412-1426, 2009. · Zbl 1171.60323
[37] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge University Press, 2012. · Zbl 1266.60001
[38] D. Nualart. The Malliavin Calculus and Related Topics. Springer-Verlag Berlin Heidelberg, 2 ed., 2006. · Zbl 1099.60003
[39] D. Nualart and W. Schoutens. Chaotic and predictable representations for Lévy processes. Stochastic Processes and their Applications, 90(1):109-122, 2000. · Zbl 1047.60088
[40] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the Fock space. In Séminaire de probabilités XXIV, pages 154-165. Springer-Verlag, 1988. · Zbl 0701.60048
[41] G. Di Nunno, B. Øksendal, and F. Proske. White noise analysis for Lévy processes. Journal of Functional Analysis, 206:109-148, 2004. · Zbl 1078.60054
[42] D. L. Ocone and I. Karatzas. A generalized Clark representation formula, with application to optimal portfolios. Stochastics and Stochastic Reports, 34(3-4):187-220, 1991. · Zbl 0727.60070
[43] G. Peccati. The Chen-Stein method for Poisson functionals. arXiv preprint 1112.5051, 2011.
[44] G. Peccati and C. Zheng. Universal Gaussian fluctuations on the discrete Poisson chaos. Bernoulli, 20(2):697-715, 2014. · Zbl 1302.60059
[45] N. Privault. Chaotic and variational calculus in discrete and continuous time for the Poisson process. Stoch. & Stoch. Rep., 51:83-109, 1994. · Zbl 0851.60052
[46] N. Privault. Stochastic Analysis in discrete and Continuous settings: with normal martingales. Springer, 2009. · Zbl 1185.60005
[47] N. Privault. Stochastic finance: An introduction with market examples. CRC Press, 2013.
[48] N. Privault and G. Serafin. Stein approximation for functionals of independent random sequences. Electronic Journal of Probability, 23:1-34, 2018. · Zbl 1390.60093
[49] G. Reinert and S. Schbath. Compound Poisson and Poisson process approximations for occurrences of multiple words in Markov chains. Journal of Computational Biology, 5(2):223-253, 1998.
[50] W. Runggaldier. Portfolio optimization in discrete time. Accad.delle Scienze dell’Istituto di Bologna, 2006.
[51] S. Schbath. Compound Poisson approximation of word counts in DNA sequences. ESAIM: PS, 1:1-16, 1997. · Zbl 0869.60067
[52] M. Schweizer. Option hedging for semimartingales. Stoch. Proc. and their App., 37(2):339-363, 1991. · Zbl 0735.90028
[53] M. Schweizer. Mean-variance hedging for general claims. Ann. of App. Proba., pages 171-179, 1992. · Zbl 0742.60042
[54] M. Schweizer. Variance-optimal hedging in discrete time. Math.of Operations Research, 20(1):1-32, 1995. · Zbl 0835.90008
[55] C. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Pro. of the 6th Berkeley Symp. on Math. Stat. Proba. p. 583-602. Univ. of Calif. Press, 1972. · Zbl 0278.60026
[56] D. Stroock. Homogeneous chaos revisited. In Séminaire de Probabilités XXI, pages 1-7. Springer, 1987. · Zbl 0632.60061
[57] G. Torrisi. Poisson approximation of point processes with stochastic intensity, and application to nonlinear Hawkes processes. In Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, volume 53, pages 679-700. Institut Henri Poincaré, 2017. · Zbl 1367.60020
[58] L. Wu. A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probability Theory and Related Fields, 118(3):427-438, 2000. · Zbl 0970.60093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.