×

The insider trading problem in a jump-binomial model. (English) Zbl 1536.91316

This extensive study investigates insider trading in a jump-binomial financial model, exploring the advantages of insider information and devising hedging strategies. It relies on Blanchet-Scalliet and Jeanblanc’s filtration enlargement results [C. Blanchet-Scalliet and M. Jeanblanc, in: From probability to finance. Lecture notes of BICMR summer school on financial mathematics, Beijing International Center for Mathematical Research, Beijing, China, May 29 – June 9, 2017. Singapore: Springer. 71–144 (2020; Zbl 1453.60097)] and Halconruy’s stochastic analysis [H. Halconruy, Electron. J. Probab. 27, Paper No. 164, 39 p. (2022; Zbl 1511.60079)]. It extends and parallels prior findings in discrete-time and incomplete markets.
In the model under consideration, there are two investors: a regular agent and an insider. Both are presumed to have negligible influence on market prices, although the insider possesses private, strategic information from the outset. The findings are presented from two aspects: firstly, from the standpoint of information theory, examining the advantage the extra knowledge affords the insider, and secondly, considering the insider’s role as a separate investor.
Initially, the author introduces tools such as the jump-binomial model, stochastic analysis techniques, and filtration enlargement results. Next an examination of the advantages of additional information, computing expected utilities for both agent and insider and linking them to information theory. The maximum expected utility for both the regular agent and the insider is calculated and contrasted; aiming to quantify the insider’s advantage and assess the benefit derived from the extra information available. Based on optimisation arguments, the aim is to assess the advantage obtained by the insider through utilizing supplementary information, with novel explicit formulas for the expected extra utility (logarithmic, exponential, power) in contrast to a standard agent being derived. An added feature is to structure an optimal hedging strategy for the insider.

MSC:

91G15 Financial markets
60H07 Stochastic calculus of variations and the Malliavin calculus
Full Text: DOI

References:

[1] Amendinger, J., Martingale representation theorems for initially enlarged filtrations, Stoch. Process. Appl., 89, 1, 101-116 (2000) · Zbl 1045.60038 · doi:10.1016/S0304-4149(00)00015-6
[2] Amendinger, J.; Imkeller, P.; Schweizer, M., Additional logarithmic utility of an insider, Stoch. Process. Appl., 75, 2, 263-286 (1998) · Zbl 0934.91020 · doi:10.1016/S0304-4149(98)00014-3
[3] Amendinger, J.; Becherer, D.; Schweizer, M., A monetary value for initial information in portfolio optimization, Finance Stoch., 7, 1, 29-46 (2003) · Zbl 1035.60069 · doi:10.1007/s007800200075
[4] Ankirchner, S.; Dereich, S.; Imkeller, P., The Shannon information of filtrations and the additional logarithmic utility of insiders, Ann. Probab., 34, 2, 743-778 (2006) · Zbl 1098.60065 · doi:10.1214/009117905000000648
[5] Barlow, MT, Study of a filtration expanded to include an honest time, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 44, 4, 307-323 (1978) · Zbl 0369.60047 · doi:10.1007/BF01013194
[6] Biagini, F.; Øksendal, B., A general stochastic calculus approach to insider trading, Appl. Math. Optim., 52, 2, 167-181 (2005) · Zbl 1093.60044 · doi:10.1007/s00245-005-0825-2
[7] Biagini, F.; Øksendal, B., Minimal variance hedging for insider trading, Int. J. Theor. Appl. Finance, 9, 8, 1351-1375 (2006) · Zbl 1134.91397 · doi:10.1142/S0219024906003998
[8] Björefeldt, J., Hee, D., Malmgard, E., Niklasson, V., Pettersson, T., Rados, J.: The trinomial asset pricing model. Chalmers University of Technology (2016)
[9] Blanchet-Scalliet, C., Jeanblanc, M.: Enlargement of filtration in discrete time. In: From Probability to Finance, pp. 71-144. Springer, Berlin (2020) · Zbl 1453.60097
[10] Blanchet-Scalliet, C.; Hillairet, C.; Jiao, Y., Successive enlargement of filtrations and application to insider information, Adv. Appl. Probab., 49, 3, 653-685 (2017) · Zbl 1425.60052 · doi:10.1017/apr.2017.17
[11] Blanchet-Scalliet, C., Jeanblanc, M., Romo Roméro, R.: Enlargement of filtration in discrete time. In: Pauline, B. (ed.) Risk And Stochastics: Ragnar Norberg, pp. 99-126. World Scientific (2019)
[12] Bouchard, B.; Nutz, M., Arbitrage and duality in nondominated discrete-time models, Ann. Appl. Probab., 25, 2, 823-859 (2015) · Zbl 1322.60045 · doi:10.1214/14-AAP1011
[13] Boyle, P., A lattice framework for option pricing with two state variables, J. Financial Quant. Anal., 23, 1, 1-12 (1988) · doi:10.2307/2331019
[14] Boyle, P.; Kirzner, E., Pricing complex options: Echo-bay ltd. gold purchase warrants, Can. J. Adm. Sci./Revue Canadienne des Sciences de l’Administration, 2, 2, 294-306 (1985) · doi:10.1111/j.1936-4490.1985.tb00408.x
[15] Burzoni, M.; Frittelli, M.; Maggis, M., Universal arbitrage aggregator in discrete-time markets under uncertainty, Finance Stoch., 20, 1, 1-50 (2016) · Zbl 1369.91201 · doi:10.1007/s00780-015-0283-x
[16] Choulli, T.; Deng, J., No-arbitrage for informational discrete time market models, Stochastics, 89, 3-4, 628-653 (2017) · Zbl 1410.91243 · doi:10.1080/17442508.2016.1276907
[17] Dai, T-S; Lyuu, Y-D, The bino-trinomial tree: a simple model for efficient and accurate option pricing, J. Deriv., 17, 4, 7-24 (2010) · doi:10.3905/jod.2010.17.4.007
[18] Delbaen, F.; Schachermayer, W., The Mathematics of Arbitrage (2006), Berlin: Springer, Berlin · Zbl 1106.91031
[19] Glonti, O.; Jamburia, L.; Kapanadze, N.; Khechinashvili, Z., The minimal entropy and minimal \(\phi \)-divergence distance martingale measures for the trinomial scheme, Appl. Math. Inform., 7, 2, 28-40 (2002) · Zbl 1057.60040
[20] Grorud, A.; Pontier, M., Insider trading in a continuous time market model, Int. J. Theor. Appl. Finance, 01, 3, 331-347 (1998) · Zbl 0909.90023 · doi:10.1142/S0219024998000199
[21] Grorud, A.; Pontier, M., Probabilités neutres au risque et asymétrie d’information, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 329, 11, 1009-1014 (1999) · Zbl 0954.60035 · doi:10.1016/S0764-4442(00)88628-0
[22] Halconruy, H., Malliavin calculus for marked binomial processes and applications, Electron. J. Probab., 27, 1-39 (2022) · Zbl 1511.60079 · doi:10.1214/22-EJP892
[23] Hata, H.; Kohatsu-Higa, A., A market model with medium/long-term effects due to an insider, Quant. Finance, 13, 3, 421-437 (2013) · Zbl 1280.91151 · doi:10.1080/14697688.2012.695084
[24] Hillairet, C.; Jiao, Y., Portfolio Optimization with Different Information Flow (2017), Amsterdam: Elsevier, Amsterdam · Zbl 1360.91003
[25] Hu, Y.; Imkeller, P.; Müller, M., Utility maximization in incomplete markets, Ann. Appl. Probab., 15, 3, 1691-1712 (2005) · Zbl 1083.60048 · doi:10.1214/105051605000000188
[26] Imkeller, P., Malliavin’s calculus in insider models: additional utility and free lunches, Math. Finance Int. J. Math. Stat. Financial Econ., 13, 1, 153-169 (2003) · Zbl 1071.91017
[27] Jacod, J.: Grossissement initial, hypothèse (H) et théorème de Girsanov. In: Grossissements de filtrations: exemples et applications, pp. 15-35. Springer, Berlin (1985) · Zbl 0568.60049
[28] Jeulin, T., Yor, M.: Grossissement d’une filtration et semi-martingales: formules explicites. In: Séminaire de Probabilités XII, pp. 78-97. Springer, Berlin (1978) · Zbl 0411.60045
[29] Kohatsu-Higa, A.: Enlargement of filtrations and models for insider trading. In: Stochastic Processes and Applications to Mathematical Finance, pp. 151-165. World Scientific (2004)
[30] Kohatsu-Higa, A.; Sulem, A., Utility maximization in an insider influenced market, Math. Finance Int. J. Math. Stat. Financial Econ, 16, 1, 153-179 (2006) · Zbl 1136.91450
[31] Neufeld, A.; Sikic, M., Robust utility maximization in discrete-time markets with friction, SIAM J. Control. Optim., 56, 3, 1912-1937 (2018) · Zbl 1387.93189 · doi:10.1137/16M1101829
[32] Nutz, M., Utility maximization under model uncertainty in discrete time, Math. Finance, 26, 2, 252-268 (2016) · Zbl 1378.91114 · doi:10.1111/mafi.12068
[33] Oblój, J., Wiesel, J.: Distributionally robust portfolio maximisation and marginal utility pricing in discrete time. arXiv preprint arXiv:2105.00935 (2021) · Zbl 1522.91231
[34] Pascucci, A.; Runggaldier, W., Financial Mathematics: Theory and Problems for Multi-period Models (2012), Berlin: Springer, Berlin · Zbl 1247.91001 · doi:10.1007/978-88-470-2538-7
[35] Pikovsky, I.; Karatzas, I., Anticipative portfolio optimization, Adv. Appl. Probab., 28, 4, 1095-1122 (1996) · doi:10.2307/1428166
[36] Privault, N.: Stochastic Analysis in Discrete and Continuous Settings. 1982. Springe, Berlin (2009)
[37] Privault, N., Stochastic Finance: An Introduction with Market Examples (2013), Boca Raton: CRC Press, Boca Raton · doi:10.1201/b16359
[38] Rásonyi, M.; Meireles-Rodrigues, A., On utility maximization under model uncertainty in discrete-time markets, Math. Finance, 31, 1, 149-175 (2021) · Zbl 1522.91234 · doi:10.1111/mafi.12284
[39] Runggaldier, W.: Portfolio optimization in discrete time. Accademia delle Scienze dell’Istituto di Bologna (2006)
[40] Runggaldier, W., Trivellato, B., Vargiolu, T.: A Bayesian adaptive control approach to risk management in a binomial model. In: Seminar on Stochastic Analysis, Random Fields and Applications III, pp. 243-258. Springer, Berlin (2002) · Zbl 1060.91086
[41] Schachermayer, W.: Optimal investment in incomplete markets when wealth may become negative. Ann. Appl. Probab. 694-734 (2001) · Zbl 1049.91085
[42] Shreve, S., Stochastic Calculus for Finance I: The Binomial Asset Pricing Model (2005), Berlin: Springer, Berlin
[43] Vargiolu, T., Explicit solutions for shortfall risk minimization in multinomial models, J. Econ. Lit., 91, 93C55 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.