×

Mass in Kähler geometry. (English) Zbl 1352.53060

A complete connected non-compact Riemannian manifold \((M,g)\) of dimension \(n\geq 3\) is said to be asymptotically Euclidean (or AE) if there is a compact subset \(\mathbf{K}\subset M\) such that \(M-\mathbf{K}\) consists of finitely many components, each of which is diffeomorphic to the complement of a closed ball \(\mathbf{D}^n \subset \mathbb{R}^n\), in a manner such that \(g\) becomes the standard Euclidean metric plus terms that fall off sufficiently rapidly at infinity. The components of \(M-\mathbf{K}\) are called the ends of \(M\); More generally, \((M,g)\) is said to be asymptotically locally Euclidean (or ALE) if each end is diffeomorphic to the quotient \((\mathbb{R}^n-\mathbf{D}^n)/\Gamma_j\), where \(\Gamma_j\subset {\mathbf O}(n)\) is a finite subgroup which acts freely on the unit sphere. The mass of an ALE manifold is given by \[ \mathfrak{m}(M, g) := \lim_{\varrho\to \infty} \frac{\Gamma(\frac{n}{2})}{4(n-1)\pi^{n/2}} \int_{S_\varrho/\Gamma_j} \left[ g_{k\ell, k} -g_{kk,\ell}\right] \mathbf{n}^\ell d\mathfrak{a}_E \] where \(S_\varrho\) is the Euclidean coordinate sphere of radius \(\varrho\), \(d\mathfrak{a}_E\) is the \((n-1)\)-dimensional volume form on this sphere, and \(\vec{\mathbf{n}}\) is the outward-pointing Euclidean unit normal vector. The mass may be understood as an anomaly in the formula for the total scalar curvature, encapsulating an essential difference between the ALE and compact cases.
In this paper, the authors prove a simple, explicit formula for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold, assuming only the sort of weak fall-off conditions required for the mass to actually be well defined. For ALE scalar-flat Kähler manifolds, the mass turns out to be a topological invariant, depending only on the underlying smooth manifold, the first Chern class of the complex structure, and the Kähler class of the metric. When the metric is actually AE (asymptotically Euclidean), this formula not only implies a positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53B35 Local differential geometry of Hermitian and Kählerian structures
53C80 Applications of global differential geometry to the sciences
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] Alexeev, V.: Classification of log canonical surface singularities: arithmetical proof. In: Flips and Abundance for Algebraic Threefolds, Société Mathématique de France, Paris, 1992, pp. 47-58. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992) · Zbl 0801.14010
[2] Andreotti A., Grauert H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. Fr. 90, 193-259 (1962) · Zbl 0106.05501
[3] Arezzo, C. Lena, R., Mazzieri, L.: On the resolution of extremal and constant scalar curvature Kaehler orbifolds. Int. Math. Res. Not. IMRN. (2016). doi:10.1093/imrn/rnv346 (First published online December 19, 2015) · Zbl 1404.53089
[4] Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. (2) 122, 997-1006 (1961) · Zbl 0094.23003 · doi:10.1103/PhysRev.122.997
[5] Baily W.L.: On the imbedding of V-manifolds in projective space. Am. J. Math. 79, 403-430 (1957) · Zbl 0173.22706 · doi:10.2307/2372689
[6] Barth, W., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4. Springer, Berlin (1984) · Zbl 0718.14023
[7] Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661-693 (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[8] Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987) · Zbl 0613.53001
[9] Bray H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177-267 (2001) · Zbl 1039.53034
[10] Brill D.R.: On the positive definite mass of the Bondi-Weber-Wheeler time-symmetric gravitational waves. Ann. Phys. 7, 466-483 (1959) · doi:10.1016/0003-4916(59)90055-7
[11] Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, vol. 102, Annals of Mathematics Studies, pp. 259-290. Princeton University Press, Princeton (1982) · Zbl 0487.53057
[12] Calderbank D.M.J., Singer M.A.: Einstein metrics and complex singularities. Invent. Math. 156, 405-443 (2004) · Zbl 1061.53026 · doi:10.1007/s00222-003-0344-1
[13] Carron G.: Cohomologie L2 et parabolicité. J. Geom. Anal. 15, 391-404 (2005) · Zbl 1090.53041 · doi:10.1007/BF02930978
[14] Chen X.X., LeBrun C., Weber B.: On conformally Kähler, Einstein manifolds. J. Am. Math. Soc. 21, 1137-1168 (2008) · Zbl 1208.53072 · doi:10.1090/S0894-0347-08-00594-8
[15] Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), vol. 138, NATO Adv. Sci. Inst. Ser. B Phys., pp. 49-59. Plenum, New York. Digitized version available at http://homepage.univie.ac.at/piotr.chrusciel/scans/index.html (1986) · Zbl 0173.33004
[16] Commichau, M., Grauert, H.: Das formale Prinzip für kompakte komplexe Untermannigfaltigkeiten mit 1-positivem Normalenbündel. In: Recent Developments in Several Complex Variables, vol. 100, Annals of Mathematics Studies, pp. 101-126. Princeton University Press, Princeton (1981) · Zbl 0485.32005
[17] Conlon, R.J., Hein, H.-J.: Asymptotically conical Calabi-Yau manifolds, III. e-print arXiv:1405.7140 [math.DG] (2014) · Zbl 1283.53045
[18] Eastwood M., LeBrun C.: Thickening and supersymmetric extensions of complex manifolds. Am. J. Math. 108, 1177-1192 (1986) · Zbl 0619.53039 · doi:10.2307/2374601
[19] Gibbons G.W., Hawking S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys. 66, 291-310 (1979) · doi:10.1007/BF01197189
[20] Grauert H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331-368 (1962) · Zbl 0173.33004 · doi:10.1007/BF01441136
[21] Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978) · Zbl 0408.14001
[22] Haskins M., Hein H.-J., Nordström J.: Asymptotically cylindrical Calabi-Yau manifolds. J. Differ. Geom. 101, 213-265 (2015) · Zbl 1332.32028
[23] Hausel T., Hunsicker E., Mazzeo R.: Hodge cohomology of gravitational instantons. Duke Math. J. 122, 485-548 (2004) · Zbl 1062.58002 · doi:10.1215/S0012-7094-04-12233-X
[24] Hill C.D., Taylor M.: Integrability of rough almost complex structures. J. Geom. Anal. 13, 163-172 (2003) · Zbl 1038.32021 · doi:10.1007/BF02931002
[25] Hirschowitz A.: On the convergence of formal equivalence between embeddings. Ann. Math. (2) 113, 501-514 (1981) · Zbl 0421.32029 · doi:10.2307/2006994
[26] Hitchin, N.J.: Complex Manifolds and Einstein’s Equations, in Twistor Geometry and Nonlinear Systems (Primorsko, 1980), pp. 73-99. Springer, Berlin (1982) · Zbl 0619.53039
[27] Honda, N.: Scalar flat Kähler metrics on affine bundles over \[{\mathbb{C}\mathbb{P}^1}\] CP1. SIGMA Symmetry Integr. Geom. Methods Appl. 10, 1-25 (2014) (Paper 046) · Zbl 0766.53050
[28] Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int.Math. Res. Not. (20), 1045-1058 (1997) · Zbl 0905.53043
[29] Huybrechts, D.: Complex Geometry. An Introduction. Universitext, Springer, Berlin (2005) · Zbl 1055.14001
[30] Joyce, D.D.: Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford (2000) · Zbl 1027.53052
[31] Kodaira K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math. (2) 75, 146-162 (1962) · Zbl 0112.38404 · doi:10.2307/1970424
[32] LeBrun, C.: Spaces of Complex Geodesics and Related Structures, PhD thesis, Oxford University. Digitized version available at http://ora.ox.ac.uk/objects/uuid:e29dd99c-0437-4956-8280-89dda76fa3f8 (1980) · Zbl 1204.53062
[33] LeBrun C.: Counter-examples to the generalized positive action conjecture. Commun. Math. Phys. 118, 591-596 (1988) · Zbl 0659.53050 · doi:10.1007/BF01221110
[34] LeBrun C.: Explicit self-dual metrics on \[{\mathbb{C} \mathbb{P}_2\#\cdots \#\mathbb{C} \mathbb{P}_2}\] CP2#⋯#CP2. J. Differ. Geom. 34, 223-253 (1991) · Zbl 0725.53067
[35] LeBrun C.: Twistors, Kähler manifolds, and bimeromorphic geometry. I. J. Am. Math. Soc. 5, 289-316 (1992) · Zbl 0766.53050
[36] LeBrun C., Maskit B.: On optimal 4-dimensional metrics. J. Geom. Anal. 18, 537-564 (2008) · Zbl 1154.53027 · doi:10.1007/s12220-008-9019-x
[37] LeBrun, C., Poon, Y.S.: Self-dual manifolds with symmetry. In: Differential geometry: geometry in mathematical physics and related topics (Los Angeles, CA, 1990), vol. 54, Proc. Sympos. Pure Math., American Mathematical Society, Providence, pp. 365-377 (1993) · Zbl 0790.53037
[38] Lee J., Parker T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[39] Lock, M., Viaclovsky, J.: A smörgåsbord of scalar-flat Kähler ALE surfaces. e-print arXiv:1410.6461 [math.DG] (2014) · Zbl 1414.32022
[40] Malgrange, B.: Sur l’intégrabilité des structures presque-complexes, in Symposia Mathematica, vol. II (INDAM, Rome, 1968), pp. 289-296. Academic Press, London (1969) · Zbl 1039.53034
[41] Marshall, S.: Deformations of Special Lagrangian Submanifolds, PhD thesis, Oxford University, 2002. Digitized version available at http://people.maths.ox.ac.uk/joyce/theses/theses.html · Zbl 0106.05501
[42] Nijenhuis A., Woolf W.B.: Some integration problems in almost-complex and complex manifolds. Ann. Math. (2) 77, 424-489 (1963) · Zbl 0115.16103 · doi:10.2307/1970126
[43] Penrose, R.: Naked singularities. Ann. New York Acad. Sci., 224, 125-134 (1973) (Sixth Texas Symposium on Relativistic Astrophysics) · Zbl 0925.53023
[44] Rollin Y., Singer M.: Constant scalar curvature Kähler surfaces and parabolic polystability. J. Geom. Anal. 19, 107-136 (2009) · Zbl 1204.53062 · doi:10.1007/s12220-008-9053-8
[45] Rossi H.: Vector fields on analytic spaces. Ann. Math. (2) 78, 455-467 (1963) · Zbl 0129.29701 · doi:10.2307/1970536
[46] Schoen R.M., Yau S.T.: Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. USA. 76, 1024-1025 (1979) · Zbl 0415.53029 · doi:10.1073/pnas.76.3.1024
[47] Schouten, J., Struik, D.: Einführung in die neueren Methoden der Differentialgeometrie, vol. 2. P. Noordhoff, Groningen (1938) · Zbl 0019.18301
[48] Schouten, J.A.: Ricci-Calculus. An Introduction to Tensor Analysis and its Geometrical Applications, 2nd edn., Springer, Berlin (1954) · Zbl 0057.37803
[49] Weber, B.: First Betti numbers of Kähler manifolds with weakly pseudo-convex boundary. e-print arXiv:1110.4571 [math.DG] (2011)
[50] Weyl, H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung, Nachr. Ges. Wiss. Göttingen, Math. Phys. Kl., 1921 (1921), pp. 99-112 · JFM 48.0844.04
[51] Witten E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.