×

The hyperbolic Yang-Mills equation for connections in an arbitrary topological class. (English) Zbl 1412.58007

Summary: This is the third part of a four-paper sequence, which establishes the Threshold Conjecture and the Soliton-Bubbling versus Scattering Dichotomy for the energy critical hyperbolic Yang-Mills equation in the \((4 + 1)\)-dimensional Minkowski space-time. This paper provides basic tools for considering the dynamics of the hyperbolic Yang-Mills equation in an arbitrary topological class at an optimal regularity. We generalize the standard notion of a topological class of connections on \(\mathbb{R}^{d}\), defined via a pullback to the one-point compactification \(\mathbb{S}^{d} = \mathbb{R}^{d} \cup \{\infty\}\), to rough connections with curvature in the critical space \(L^{\frac{d}{2}}(\mathbb{R}^{d})\). Moreover, we provide excision and extension techniques for the Yang-Mills constraint (or Gauss) equation, which allow us to efficiently localize Yang-Mills initial data sets. Combined with the results in our previous paper [“The hyperbolic Yang-Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions”, Preprint, arXiv:1709.09332], we obtain local well-posedness of the hyperbolic Yang-Mills equation on \(\mathbb{R}^{1+d}\) (\(d \geq 4\)) in an arbitrary topological class at optimal regularity in the temporal gauge (where finite speed of propagation holds). In addition, in the energy subcritical case \(d = 3\), our techniques provide an alternative proof of the classical finite energy global well-posedness theorem of S. Klainerman and M. Machedon [Ann. Math. (2) 142, No. 1, 39–119 (1995; Zbl 0827.53056)], while also removing the smallness assumption in the temporal-gauge local well-posedness theorem of T. Tao [J. Differ. Equations 189, No. 2, 366–382 (2003; Zbl 1017.81037)]. Although this paper is a part of a larger sequence, the materials presented in this paper may be of independent and general interest. For this reason, we have organized the paper so that it may be read separately from the sequence.

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals

References:

[1] Atiyah M.F., Hitchin N.J., Drinfeld V.G., Manin Y.I.: Construction of instantons. Phys. Lett. A 65(3), 185-187 (1978) https://doi.org/10.1016/0375-9601(78)90141-X · Zbl 0424.14004 · doi:10.1016/0375-9601(78)90141-X
[2] Atiyah M.F., Hitchin N.J., Singer I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A 362(1711), 425-461 (1978) https://doi.org/10.1098/rspa.1978.0143 · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[3] Bor G.: Yang-Mills fields which are not self-dual. Commun. Math. Phys. 145(2), 393-410 (1992) http://projecteuclid.org/euclid.cmp/1104249648 · Zbl 0764.53049 · doi:10.1007/BF02099144
[4] Bott R.: An application of the Morse theory to the topology of Lie-groups. Bull. Soc. Math. Fr. 84, 251-281 (1956) http://www.numdam.org/item?id=BSMF_1956_84_251_0 · Zbl 0073.40001 · doi:10.24033/bsmf.1472
[5] Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.) 94, vi+103 (2003) · Zbl 1058.83007
[6] Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137-189 (2000) https://doi.org/10.1007/PL00005533 · Zbl 1031.53064 · doi:10.1007/PL00005533
[7] Corvino J., Schoen R.M.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185-217 (2006) http://projecteuclid.org/euclid.jdg/1146169910 · Zbl 1122.58016 · doi:10.4310/jdg/1146169910
[8] Czimek, S.: An extension procedure for the constraint equations, preprint (2018) PDE 4:2. arXiv:1609.08814 · Zbl 1403.35287
[9] Czimek, S.: Boundary harmonic coordinates and the localised bounded L2 curvature theorem, preprint (2017). arXiv:1708.01667
[10] Gursky, M., Kelleher, C., Streets, J.: A conformally invariant gap theorem in Yang-Mills theory, preprint (2017). arXiv:1708.01157 · Zbl 1420.53028
[11] Klainerman S., Machedon M.: Finite energy solutions of the Yang-Mills equations in \[{{\mathbb{R}}^{3+1}}\] R3+1. Ann. Math. (2) 142(1), 39-119 (1995) https://doi.org/10.2307/2118611 · Zbl 0827.53056 · doi:10.2307/2118611
[12] Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, 2nd edn., vol. 140. Birkhäuser, Basel (2002) · Zbl 1075.22501
[13] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I. Wiley Classics Library, Wiley, New York, (1996). Reprint of the 1963 original, A Wiley-Interscience Publication · Zbl 0119.37502
[14] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. II. Wiley Classics Library, Wiley, New York (1996). Reprint of the 1969 original, A Wiley-Interscience Publication · Zbl 0119.37502
[15] Krieger J., Tataru D.: Global well-posedness for the Yang-Mills equation in 4 + 1 dimensions. Small energy. Ann. Math. (2) 185(3), 831-893 (2017) · Zbl 1377.58007 · doi:10.4007/annals.2017.185.3.3
[16] Milnor, J.W., Stasheff, J.D.: Characteristic Classes, Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1974) · Zbl 0298.57008
[17] Oh S.-J.: Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in H1. J. Hyperbolic Differ. Equ. 11(1), 1-108 (2014) https://doi.org/10.1142/S0219891614500015 · Zbl 1295.35328 · doi:10.1142/S0219891614500015
[18] Oh S.-J.: Finite energy global well-posedness of the Yang-Mills equations on \[{{\mathbb{R}}^{1+3}}\] R1+3: an approach using the Yang-Mills heat flow. Duke Math. J. 164(9), 1669-1732 (2015) https://doi.org/10.1215/00127094-3119953 · Zbl 1325.35180 · doi:10.1215/00127094-3119953
[19] Oh, S.-J., Tataru, D.: Local well-posedness of the (4 + 1)-dimensional Maxwell-Klein-Gordon equation at energy regularity. Ann. PDE 2(1), 70, Art. 2 (2016). arXiv:1503.01560, http://dx.doi.org/10.1007/s40818-016-0006-4 · Zbl 1402.35273
[20] Oh, S.-J., Tataru, D.: The Yang-Mills heat flow and the caloric gauge, preprint (2017). arXiv:1709.08599 · Zbl 1511.35002
[21] Oh, S.-J., Tataru, D.: The hyperbolic Yang-Mills equation in the caloric gauge. Local well-posedness and control of energy dispersed solutions, preprint (2017). arXiv:1709.09332 · Zbl 1446.35150
[22] Oh, S.-J., Tataru, D.: The Threshold Conjecture for the energy critical hyperbolic Yang-Mills equation, preprint (2017). arXiv:1709.08606
[23] Oh, S.-J., Tataru, D.: The threshold theorem for the (4 + 1)-dimensional Yang-Mills equation: an overview of the proof, preprint (2017). arXiv:1709.09088 · Zbl 1420.35273
[24] Parker T.H.: A Morse theory for equivariant Yang-Mills. Duke Math. J. 66(2), 337-356 (1992) https://doi.org/10.1215/S0012-7094-92-06610-5 · Zbl 0782.58016 · doi:10.1215/S0012-7094-92-06610-5
[25] Sadun L., Segert J.: Non-self-dual Yang-Mills connections with nonzero Chern number. Bull. Am. Math. Soc. (N.S.) 24(1), 163-170 (1991) https://doi.org/10.1090/S0273-0979-1991-15978-1 · Zbl 0722.58014 · doi:10.1090/S0273-0979-1991-15978-1
[26] Schoen R., Uhlenbeck K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253-268 (1983) http://projecteuclid.org/euclid.jdg/1214437663 · Zbl 0547.58020 · doi:10.4310/jdg/1214437663
[27] Sibner L.M., Sibner R.J., Uhlenbeck K.: Solutions to Yang-Mills equations that are not self-dual. Proc. Natl. Acad. Sci. USA 86(22), 8610-8613 (1989) https://doi.org/10.1073/pnas.86.22.8610 · Zbl 0731.53031 · doi:10.1073/pnas.86.22.8610
[28] Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970) · Zbl 0207.13501
[29] Tao T.: Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ. 189(2), 366-382 (2003) https://doi.org/10.1016/S0022-0396(02)00177-8 · Zbl 1017.81037 · doi:10.1016/S0022-0396(02)00177-8
[30] Uhlenbeck K.K.: Connections with Lp bounds on curvature. Commun. Math. Phys. 83(1), 31-42 (1982) http://projecteuclid.org/euclid.cmp/1103920743 · Zbl 0499.58019 · doi:10.1007/BF01947069
[31] Uhlenbeck K.K.: The Chern classes of Sobolev connections. Commun. Math. Phys. 101(4), 449-457 (1985) http://projecteuclid.org/euclid.cmp/1104114242 · Zbl 0586.53018 · doi:10.1007/BF01210739
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.