×

Constant \(Q\)-curvature metrics on conic 4-manifolds. (English) Zbl 1501.53042

Summary: We consider the constant \(Q\)-curvature metric problem in a given conformal class on a conic 4-manifold and study related differential equations. We define subcritical, critical, and supercritical conic 4-manifolds. Following [M. Troyanov, Trans. Am. Math. Soc. 324, No. 2, 793–821 (1991; Zbl 0724.53023); S.-Y. A. Chang and P. C. Yang, Ann. Math. (2) 142, No. 1, 171–212 (1995; Zbl 0842.58011)], we prove the existence of constant \(Q\)-curvature metrics in the subcritical case. For conic 4-spheres with two singular points, we prove the uniqueness in critical cases and nonexistence in supercritical cases. We also give the asymptotic expansion of the corresponding PDE near isolated singularities.

MSC:

53C18 Conformal structures on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35R01 PDEs on manifolds
49Q10 Optimization of shapes other than minimal surfaces

References:

[1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), no. 2, 385-398. · Zbl 0672.31008
[2] P. Baird, A. Fardoun and R. Regbaoui, Prescribed Q-curvature on manifolds of even dimension, J. Geom. Phys. 59 (2009), no. 2, 221-233. · Zbl 1160.53355
[3] T. P. Branson, S.-Y. A. Chang and P. C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Comm. Math. Phys. 149 (1992), no. 2, 241-262. · Zbl 0761.58053
[4] T. P. Branson and B. Ørsted, Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991), no. 3, 669-682. · Zbl 0762.47019
[5] S. Brendle, Global existence and convergence for a higher order flow in conformal geometry, Ann. of Math. (2) 158 (2003), no. 1, 323-343. · Zbl 1042.53016
[6] R. Buzano and H. T. Nguyen, The Chern-Gauss-Bonnet formula for singular non-compact four-dimensional manifolds, Comm. Anal. Geom. 27 (2019), no. 8, 1697-1736. · Zbl 1432.53051
[7] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297. · Zbl 0702.35085
[8] S.-Y. A. Chang and P. C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. of Math. (2) 142 (1995), no. 1, 171-212. · Zbl 0842.58011
[9] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189-237. · Zbl 0865.53037
[10] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406-480. · Zbl 0902.53034
[11] W. X. Chen and C. Li, What kinds of singular surfaces can admit constant curvature?, Duke Math. J. 78 (1995), no. 2, 437-451. · Zbl 0854.53036
[12] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), no. 1, 183-197. · Zbl 1312.53096
[13] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2\pi, J. Amer. Math. Soc. 28 (2015), no. 1, 199-234. · Zbl 1312.53097
[14] X. Chen, S. Donaldson and S. Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2\pi and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235-278. · Zbl 1311.53059
[15] Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2) 168 (2008), no. 3, 813-858. · Zbl 1186.53050
[16] H. Fang and M. Lai, On convergence to a football, Math. Ann. 366 (2016), no. 1-2, 83-100. · Zbl 1359.53033
[17] H. Fang and W. Wei, \sigma_2 Yamabe problem on conic 4-spheres, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 119. · Zbl 1421.53040
[18] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209-243. · Zbl 0425.35020
[19] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1998. · Zbl 0691.35001
[20] C. R. Graham, R. Jenne, L. J. Mason and G. A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2) 46 (1992), no. 3, 557-565. · Zbl 0726.53010
[21] M. J. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Comm. Math. Phys. 207 (1999), no. 1, 131-143. · Zbl 0988.58013
[22] A. Hyder, C. Lin and J. Wei, The SU(3) Toda system with multiple singular sources, Pacific J. Math. 305 (2020), no. 2, 645-666. · Zbl 1441.35127
[23] A. Hyder, G. Mancini and L. Martinazzi, Local and nonlocal singular Liouville equations in Euclidean spaces, Int. Math. Res. Not. IMRN (2019), Article ID rnz149.
[24] N. Lam and G. Lu, Sharp singular Adams inequalities in high order Sobolev spaces, Methods Appl. Anal. 19 (2012), no. 3, 243-266. · Zbl 1319.46027
[25] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91. · Zbl 0633.53062
[26] J. Li, Y. Li and P. Liu, The Q-curvature on a 4-dimensional Riemannian manifold (M,g) with \int_MQdV_g=8\pi^2, Adv. Math. 231 (2012), no. 3-4, 2194-2223. · Zbl 1254.53065
[27] C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in \(\mathbb{R}}^{n\), Comment. Math. Helv. 73 (1998), no. 2, 206-231. · Zbl 0933.35057
[28] F. Luo and G. Tian, Liouville equation and spherical convex polytopes, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1119-1129. · Zbl 0806.53012
[29] A. Maalaoui, Prescribing the Q-curvature on the sphere with conical singularities, Dyn. Syst 36 (2016), no. 11, 6307-6330. · Zbl 1350.53052
[30] A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006), 137-174. · Zbl 1098.53032
[31] C. B. Ndiaye, Constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal. 251 (2007), no. 1, 1-58. · Zbl 1130.53027
[32] G. Talenti, Elliptic equations and rearrangements, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697-718. · Zbl 0341.35031
[33] C. Tarsi, Adams’ inequality and limiting Sobolev embeddings into Zygmund spaces, Potential Anal. 37 (2012), no. 4, 353-385. · Zbl 1279.46025
[34] G. Tian, Kähler-Einstein metrics on algebraic manifolds, Transcendental Methods in Algebraic Geometry (Cetraro 1994), Lecture Notes in Math. 1646, Springer, Berlin (1996), 143-185. · Zbl 0896.32003
[35] G. Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085-1156. · Zbl 1318.14038
[36] M. Troyanov, Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry (Peñíscola 1988), Lecture Notes in Math. 1410, Springer, Berlin (1989), 296-306. · Zbl 0697.53037
[37] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821. · Zbl 0724.53023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.