×

Regularity and energy quantization for the Yang-Mills-Dirac equations on 4-manifolds. (English) Zbl 1225.58007

The author considers a Yang-Mills-Dirac equation on 4-dimensional Riemannian manifolds and shows that any of its finite energy weak solutions is regular in the sense that it is \(W^{2,2}\cap C^0\)-gauge equivalent to a \(C^\infty\)-solution. Moreover, a compactness-energy quantization effect for the Yang-Mills-Dirac equation is observed and discussed. Interesting arguments involving interpolation spaces and the regularity properties of basic differential operators acting on these interpolation space are used.

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
49N60 Regularity of solutions in optimal control
81T13 Yang-Mills and other gauge theories in quantum field theory
Full Text: DOI

References:

[1] Chang, S. Y.; Gursky, M.; Yang, P., Regularity of a fourth order nonlinear PDE with critical exponent, Amer. J. Math., 121, 215-257 (1999) · Zbl 0921.35032
[2] Chen, Q.; Jost, J.; Li, J.; Wang, G., Dirac harmonic maps, Math. Z., 254, 409-432 (2006) · Zbl 1103.53033
[3] Chen, Q.; Jost, J.; Li, J.; Wang, G., Regularity theorems and energy identities for Dirac-harmonic maps, Math. Z., 251, 61-84 (2005) · Zbl 1091.53042
[4] Donaldson, S. K.; Kronheimer, P. B., The Geometry of Four-Manifolds, Oxford Mathematical Monographs (1990), Oxford University Press · Zbl 0820.57002
[5] Ding, W.; Tian, G., Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom., 3, 543-554 (1995) · Zbl 0855.58016
[6] Friedrich, T., Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics (2000), AMS · Zbl 0949.58032
[7] Freed, D.; Uhlenbeck, K., Instantons and Four-Manifolds, Mathematical Sciences Research Institute Publications, vol. 1 (1984), Springer · Zbl 0559.57001
[8] Hélein, F., Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris, 312, 591-596 (1991) · Zbl 0728.35015
[9] Hélein, F., Harmonic Maps, Conservation Laws and Moving Frames, Cambridge Tracts in Math., vol. 150 (2002), Cambridge Univ. Press · Zbl 1010.58010
[10] Hitchin, N., Harmonic spinors, Adv. Math., 14, 1-55 (1974) · Zbl 0284.58016
[11] Lawson, H. B.; Michelson, M.-L., Spin Geometry (1989), Princeton University Press · Zbl 0688.57001
[12] Isobe, T., A regularity result for a class of degenerate Yang-Mills connections in critical dimensions, Forum Math., 20, 1109-1139 (2008) · Zbl 1160.58009
[13] Li, W., Removable singularities for solutions of coupled Yang-Mills-Dirac equations, J. Math. Phys., 47, 103502 (2006) · Zbl 1112.58011
[14] Lin, F. H.; Rivière, T., A quantization property for static Ginzburg-Landau vortices, Comm. Pure Appl. Math., 54, 206-228 (2000) · Zbl 1033.58013
[15] Lin, F. H.; Rivière, T., Energy quantization for harmonic maps, Duke Math. J., 111, 177-193 (2002) · Zbl 1014.58008
[16] Otway, T. H., Removable singularities in coupled Yang-Mills-Dirac fields, Comm. Partial Differential Equations, 12, 1029-1070 (1987) · Zbl 0625.35031
[17] Parker, T. H., Gauge theories on four dimensional manifolds, Comm. Math. Phys., 85, 563-602 (1982) · Zbl 0502.53022
[18] Parker, T. H., Bubble tree convergence for harmonic maps, J. Differential Geom., 44, 595-633 (1996) · Zbl 0874.58012
[19] Peetre, J., Espaces d’intepolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble), 16, 279-317 (1966) · Zbl 0151.17903
[20] Rivière, T., Interpolation spaces and energy quantization for Yang-Mills field, Comm. Anal. Geom., 10, 683-708 (2002) · Zbl 1018.58006
[21] Rivière, T., Conservation laws for conformal invariant variational problems, Invent. Math., 168, 1-22 (2007) · Zbl 1128.58010
[22] Sedlacek, S., A direct method for minimizing the Yang-Mills functional over 4-manifolds, Comm. Math. Phys., 86, 515-527 (1982) · Zbl 0506.53016
[23] Shevchishin, V. V., Limit holonomy and extension properties of Sobolev and Yang-Mills bundles, J. Geom. Anal., 12 (2002) · Zbl 1034.58011
[24] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton Univ. Press · Zbl 0232.42007
[25] Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital., 1, 478-500 (1998) · Zbl 0929.46028
[26] Tartar, L., An Introduction to Sobolev Spaces and Interpolation Spaces, Lect. Notes Unione Mat. Ital. (2007), Springer · Zbl 1126.46001
[27] Taubes, C. H., Path-connected Yang-Mills moduli spaces, J. Differential Geom., 19, 337-392 (1984) · Zbl 0551.53040
[28] Uhlenbeck, K., Connections with \(L^p\) bounds on curvature, Comm. Math. Phys., 83, 31-42 (1982) · Zbl 0499.58019
[29] Uhlenbeck, K., Removable singularities in Yang-Mills fields, Comm. Math. Phys., 83, 11-29 (1982) · Zbl 0491.58032
[30] Uhlenbeck, K., The Chern classes of Sobolev connections, Comm. Math. Phys., 101, 449-457 (1985) · Zbl 0586.53018
[31] Uhlenbeck, K.; Viaclovsky, J., Regularity of weak solutions to critical exponent variational equations, Math. Res. Lett., 7, 651-656 (2000) · Zbl 0977.58020
[32] Wehrheim, K., Uhlenbeck Compactness, EMS Ser. Lect. Math. (2004), European Mathematical Society · Zbl 1055.53027
[33] Zhao, L., Energy identities for Dirac-harmonic maps, Calc. Var. Partial Differential Equations, 28, 121-138 (2007) · Zbl 1104.53062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.