×

Regularity theorems and energy identities for Dirac-harmonic maps. (English) Zbl 1091.53042

Authors’ summary: We study Dirac-harmonic maps from a Riemann surface to a sphere \(S^ n\). We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.

MSC:

53C43 Differential geometric aspects of harmonic maps
58E20 Harmonic maps, etc.

References:

[1] Bär, C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996) · Zbl 0867.53037 · doi:10.1007/BF02246994
[2] Bär, C., Schmutz, P.: Harmonic spinors on Riemann surfaces. Ann. Glob. Anal. Geom. 10, 263–273 (1992) · Zbl 0763.30017 · doi:10.1007/BF00136869
[3] Chen, Q., Jost, J., Li, J. Y., Wang, G.: Dirac-harmonic maps. preprint 2004 · Zbl 1103.53033
[4] Ding, W. Y., Tian, G.: Energy identity for a class of approximate harmonic maps from surfaces. Comm. Anal. Geom. 3, 543–554 (1996) · Zbl 0855.58016
[5] Eells, J., James, Lemaire, L.: Two reports on harmonic maps. World Scientific Publishing Co., Inc., River Edge, NJ, 1995 · Zbl 0836.58012
[6] Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C.R. Acad. Sci. Paris Sé r. I Math. 312, 591–596 (1991) · Zbl 0728.35015
[7] Hélein, F.: Harmonic maps, conservation laws and moving frames. 2nd edtion, Cambridge University Press, 2002 · Zbl 1010.58010
[8] Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[9] Jost, J.: Riemannian Geometry and geometric analysis. 3rd edition, Springer-Verlag, 2002 · Zbl 1034.53001
[10] Jost, J.: Two-dimensional geometric variational problems. Wiley, 1991 · Zbl 0729.49001
[11] Lamm, T.: Fourth order approximation of harmonic maps from surfaces. preprint, 2004
[12] Lawson, H., Michelsohn, M.L.: Spin geometry. Princeton University Press, 1989 · Zbl 0688.57001
[13] Parker, T., Wolfson, J.G.: Pseudo-holomorphic maps and bubble trees. J. Geom. Anal. 3, 63–98 (1996) · Zbl 0759.53023
[14] Parker, T.: Bubble tree convergence for harmonic maps. J. Differential Geom. 44, 595–633 (1996) · Zbl 0874.58012
[15] Qing, J., Tian, G.: Bubbling of the heat flows for harmonic maps from surfaces. Comm. Pure Appl. Math. 50, 295–310 (1997) · Zbl 0879.58017 · doi:10.1002/(SICI)1097-0312(199704)50:4<295::AID-CPA1>3.0.CO;2-5
[16] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. of Math. 113, 1–24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
[17] Wente, H.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969) · Zbl 0181.11501 · doi:10.1016/0022-247X(69)90156-5
[18] Ye, R.: Gromov’s compactness theorem for pseudo holomorphic curves. Trans. Amer. Math. Soc. 342, 671–694 (1994) · Zbl 0810.53024 · doi:10.2307/2154647
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.