×

Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection. (English) Zbl 1498.35339

Summary: The spatiotemporal dynamics of a semi-discrete Mussel-Algae system with advection are investigated in this paper. The stability of equilibrium, the direction of Andronov-Hopf bifurcation and Bautin bifurcation to kinetic system are obtained via linear stability analysis, the Lyapunov coefficients and regularity. In order to analyze the Turing instability, the characteristic equations of the advection operator \(\nabla\) is considered. Combined with linear analysis, the critical condition of Turing instability conditions for advection term is obtained. Simulations are performed to illustrate the above theoretical results, such as bifurcation diagram, phase orbits and pattern formations. In addition, simulations for fixed parameters and special initial conditions indicate that the initial conditions can alter the structure of patterns. As a result, the theoretical results for Turing instability of some model with advection term may trigger some significance results for further research.

MSC:

35K57 Reaction-diffusion equations
37M20 Computational methods for bifurcation problems in dynamical systems
37N25 Dynamical systems in biology
Full Text: DOI

References:

[1] Turing, A., The chemical basis of morphogenesis, Philos Trans R Soc B-Biol Sci, 237, 641, 37-72 (1952) · Zbl 1403.92034
[2] Li, X.; Jiang, W., Hopf bifurcation and Turing instability in the reaction-diffusion Holling-Tanner predator-prey model, IMA J Appl Math, 78, 2, 287-306 (2011) · Zbl 1267.35236
[3] Jia, D.; Zhang, T.; Yuan, S., Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, Int J Bifurcation Chaos, 29, 4, 193011 (2019) · Zbl 1411.35257
[4] Zhang, T.; Liu, X.; Meng, X.; Zhang, T., Spatio-temporal dynamics near the steady state of a planktonic system, Comput Math Appl, 75, 4490-4504 (2018) · Zbl 1417.92222
[5] Liu, B.; Wu, R.; Chen, L., Turing patterns in the Lengyel-Epstein system with super-diffusion, Int J Bifurcation Chaos, 27, 8, 1730026 (2017) · Zbl 1377.35021
[6] Han, R.; Dai, B., Cross-diffusion induced Turing instability and amplitude equation for a toxic-phytoplankton-zooplankton model with Nonmonotonic functional response, Int J Bifurcation Chaos, 27, 6, 1750088 (2017) · Zbl 1370.35256
[7] Han, R.; Dai, B., Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal, 45, 822-853 (2019) · Zbl 1406.37064
[8] Yang, J.; Zhang, T.; Yuan, S., Turing pattern induced by cross-diffusion in a predator-prey model with pack predation-Herd behavior, Int J Bifurcation Chaos, 30, 7, 2050103 (2020) · Zbl 1448.92257
[9] Yang, R.; Song, Y., Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal, 31, 4, 356-387 (2016) · Zbl 1344.37061
[10] Song, Y.; Yang, R.; Sun, G., Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl Math Modell, 46, 476-491 (2017) · Zbl 1443.92033
[11] Mai, F.; Qin, L.; Zhang, G., Turing instability for a semi-discrete Gierer-Meinhardt system, Physica A, 391, 5, 2014-2022 (2012)
[12] Song, Y.; Jiang, H.; Liu, Q.-X.; Yuan, Y., Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation, SIAM J Appl Dyn Syst, 16, 4, 2030-2062 (2017) · Zbl 1382.35035
[13] Sherratt, J. A., Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I, Nonlinearity, 23, 2657-2675 (2010) · Zbl 1197.92047
[14] Sherratt, J. A., Periodic traveling waves in integro differential equations for nonlocal dispersal, SIAM J Appl Dyn Syst, 13, 4, 1517-1541 (2014) · Zbl 1515.35303
[15] van de Koppel, J.; Rietkerk, M.; DankersNorbert, N.; Herman, P. M., Scale dependent feedback and regular spatial patterns in young mussel beds, Am Nat, 165, 3, E66-E77 (2005)
[16] Crandall, M. G.; Rabinowitz, P. H., The Hopf bifurcation theorem in infinite dimensions, Arch Ration Mech Anal, 67, 1, 53-72 (1977) · Zbl 0385.34020
[17] Sherratt, J. A.; Mackenzie, J. J., How does tidal flow affect pattern formation in mussel beds?, J Theor Biol, 406, 83-92 (2016) · Zbl 1344.92189
[18] Shennan, I.; Long, A. J.; Horton, B. P., Handbook of sea-level research (2015), Wiley-Blackwell, 9781118452585
[19] May, R., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088
[20] Jing, Z.; Yang, J., Bifurcation and chaos in discrete-time predator-prey system, Chaos Solitons Fractals, 27, 259-277 (2006) · Zbl 1085.92045
[21] Liu, X.; Xiao, D., Complex dynamic behaviors of a discrete-time predator-prey system, Chaos Solitons Fractals, 32, 80-94 (2007) · Zbl 1130.92056
[22] Han, Y. T.; Han, B.; Zhang, L.; Xu, L.; Li, M. F.; Zhang, G., Turing instability and wave patterns for a symmetric discrete competitive Lotka-Volterra system, Wseas Trans Math, 32, 181-189 (2011)
[23] Li, M.; Han, B.; Xu, L.; Zhang, G., Spiral patterns near Turing instability in a discrete reaction diffusion system, Chaos Solitons Fractals, 49, 1-6 (2013) · Zbl 1310.92046
[24] Zhang, G.; Zhang, R.; Yan, Y., The diffusion-driven instability and complexity for a single-handed discrete Fisher equation, Appl Math Comput, 371, 124946 (2020) · Zbl 1433.39003
[25] Domokos, G.; Scheuring, I., Discrete and continuous state population models in a noisy world, J Theor Biol, 227, 4, 535-545 (2004) · Zbl 1439.92152
[26] Deutsch, A.; Dormann, S.; Maini, P. K., Cellular automaton modeling of biological pattern formation (2005), Birkhuser: Birkhuser Boston · Zbl 1154.37007
[27] Rand, D. A.; Wilson, H. B., Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems, Proc R Soc B, 259, 111-117 (1995)
[28] 1647-32 · Zbl 1108.92042
[29] Huang, T.; Zhang, H., Bifurcation, chaos and pattern formation in a space- and time-discrete predator-prey system, Chaos Solitons Fractals, 91, 92-107 (2016) · Zbl 1372.92082
[30] Zhang, F.; Zhang, H.; Huang, T.; Meng, T.; Ma, S., Coupled effects of Turing and Neimark-Sacker bifurcations on vegetation pattern self-organization in a discrete vegetation-sand model, Entropy, 19, 9, 1-22 (2017)
[31] Mistro, D. C.; Rodrigues, L. A.D.; Petrovskii, S., Spatiotemporal complexity of biological invasion in a space- and time-discrete predator -prey system with the strong Allee effect, Ecol Complexity, 9, 16-32 (2012)
[32] Kaneko, K., Pattern dynamics in spatiotemporal chaos: pattern selection, diffusion of defect and pattern competition intermettency, Physica D, 34, 1-2, 1-41 (1989) · Zbl 0702.58043
[33] Kaneko, K., Spatiotemporal chaos in one- and two-dimensional coupled map lattices, Physica D, 37, 1-3, 60-82 (1989)
[34] Xu, L.; Zhao, J.; Zhang, X.; Feng, J.; Zhang, G., Turing instability and pattern formation in a semi-discrete Brusselator model, Mod Phys Lett. B, 27, 1, 1-9 (2013)
[35] Ma, S., Research on patterns and complex dynamics of discrete predator-prey system based on coupled network (2019), North China Electric Power University: North China Electric Power University Beijing
[36] Paulin, M. G., Pattern formation and animal morphogenesis (2014), Springer, Berlin
[37] Meng, L.; Li, X.; Zhang, G., Simple diffusion can support the pitchfork, the flip bifurcations, and the chaos, Commun Nonlinear Sci Numer Simul, 53, 202-212 (2017) · Zbl 1510.39011
[38] Huang, T.; Zhang, H.; Yang, H.; Wang, N.; Zhang, F., Complex patterns in a space- and time-discrete predator-prey model with Beddington-Deangelis functional response, Commun Nonlinear Sci Numer Simul, 43, 182-199 (2017) · Zbl 1466.92147
[39] Yang, X.; Yang, M.; Liu, H.; Liao, X., Bautin bifurcation in a class of two-neuron networks with resonant bilinear terms, Chaos Solitons Fractals, 38, 2, 575-589 (2008) · Zbl 1146.34315
[40] Kuznetsov, Y. A., Elements of applied bifurcation theory (2004), Springer-Verlag New York Berlin Heidelberg · Zbl 1082.37002
[41] Wu, X. P.; Eshete, M., Bautin bifurcation for the Lengyel-Epstein system, J Math Chem, 52, 10, 2570-2580 (2014) · Zbl 1331.92184
[42] Bai, L.; Zhang, G., Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions, Appl Math Comput, 210, 2, 321-333 (2017) · Zbl 1162.39300
[43] Dilão, R.; Sainhas, J., Validation and calibration of models for reaction-diffusion systems, Int J Bifurcation Chaos, 8, 6, 1163-1182 (1998) · Zbl 1040.65085
[44] Huang, T.; Zhang, H.; Hu, Z.; Pan, G.; Ma, S.; Zhang, X., Predator-prey pattern formation driven by population diffusion based on Moore neighborhood structure, Adv Differ Equ, 2019, 1, 399 (2019) · Zbl 1485.92090
[45] Zhang, T.; Zang, H., Delay-induced Turing instability in reaction-diffusion equations, Phys Rev E, 90, 052908 (2014)
[46] Zhang, G.; Wu, F.; Hayat, T.; Ma, J., Selection of spatial pattern on resonant network of coupled memristor and Josephson junction, Commun Nonlinear Sci Numer Simul, 65, 79-90 (2018) · Zbl 1508.94127
[47] Liu, Q.; Rietkerk, M.; Herman, P. M.; Piersma, T.; Fryxell, J. M.; van de Koppel, J., Phase separation driven by density-dependent movement: a novel mechanism for ecological patterns, Arch Ration Mech Anal, 16, 1, 53-72 (2016)
[48] Wang, R.; Liu, Q.; Sun, G.; Jin, Z.; van de Koppel, J., Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, J R Soc Interface, 6, 37, 705-718 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.