×

How does tidal flow affect pattern formation in mussel beds? (English) Zbl 1344.92189

Summary: In the Wadden Sea, mussel beds self-organise into spatial patterns consisting of bands parallel to the shore. A leading explanation for this phenomenon is that mussel aggregation reduces losses from dislodgement and predation, because of the adherence of mussels to one another. Previous mathematical modelling has shown that this can lead to spatial patterning when it is coupled to the advection from the open sea of algae – the main food source for mussels in the Wadden Sea. A complicating factor in this process is that the advection of algae will actually oscillate with the tidal flow. This has been excluded from previous modelling studies, and the present paper concerns the implications of this oscillation for pattern formation. The authors initially consider piecewise constant (“square-tooth”) oscillations in advection, which enables analytical investigation of the conditions for pattern formation. They then build on this to study the more realistic case of sinusoidal oscillations. Their analysis shows that future research on the details of pattern formation in mussel beds will require an in-depth understanding of how the tides affect long-range inhibition among mussels.

MSC:

92D40 Ecology
92C15 Developmental biology, pattern formation

Software:

wavetrain
Full Text: DOI

References:

[1] Bekker, M. F.; Clark, J. T.; Jackson, M. W., Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA, Appl. Veg. Sci., 12, 237-249 (2009)
[2] Bertness, M. D.; Grosholz, E., Population dynamics of the ribbed mussel, Geukensia demissathe costs and benefits of an aggregated distribution, Oecologia, 67, 192-204 (1985)
[3] Bhattacharyya, R.; Mukhopadhyay, B., On a population pathogen model incorporating species dispersal with temporal variation in dispersal rate, J. Biol. Phys., 37, 401-416 (2011)
[4] Côté, I. M.; Jelnikar, E., Predator-induced clumping behaviour in mussels (Mytilus edulis Linnaeus), J. Exp. Mar. Biol. Ecol., 235, 201-211 (1999)
[5] Cangelosi, R. A.; Wollkind, D. J.; Kealy-Dichone, B. J.; Chaiya, I., Nonlinear stability analyses of Turing patterns for a mussel-algae model, J. Math. Biol., 70, 1249-1294 (2015) · Zbl 1456.35028
[6] Cartwright, D. E., Tides: A Scientific History (1999), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1003.00005
[7] Commito, J. A.; Commito, A. E.; Platt, R. V.; Grupe, B. M.; Piniak, W. E.; Gownaris, N. J.; Reeves, K. A.; Vissichelli, A. M., Recruitment facilitation and spatial pattern formation in soft-bottom mussel beds, Ecosphere, 5, 12, 160 (2014)
[8] de Paoli, H.; van de Koppel, J.; van der Zee, E.; Kangeri, A.; van Belzen, J.; Holthuijsen, S.; van den Berg, A.; Herman, P.; Olff, H.; van der Heide, T., Processes limiting mussel bed restoration in the Wadden-Sea, J. Sea Res., 103, 42-49 (2015)
[9] Deblauwe, V.; Barbier, N.; Couteron, P.; Lejeune, O.; Bogaert, J., The global biogeography of semi-arid periodic vegetation patterns, Glob. Ecol. Biogoegr, 17, 715-723 (2008)
[10] Deblauwe, V.; Couteron, P.; Lejeune, O.; Bogaert, J.; Barbier, N., Environmental modulation of self-organized periodic vegetation patterns in Sudan, Ecography, 34, 990-1001 (2011)
[11] Dolmer, P., Algal concentration profiles above mussel beds, J. Sea Res., 43, 113-119 (2000)
[12] Donker, J. J.; van der Vegt, M.; Hoekstra, P., Erosion of an intertidal mussel bed by ice- and wave-action, Cont. Shelf Res., 106, 60-69 (2015)
[14] Eppinga, M. B.; Rietkerk, M.; Borren, W.; Lapshina, E. D.; Bleuten, W.; Wassen, M. J., Regular surface patterning of peatlandsconfronting theory with field data, Ecosystems, 11, 520-536 (2008)
[15] Eppinga, M. B.; Rietkerk, M.; Wassen, M. J.; De Ruiter, P. C., Linking habitat modification to catastrophic shifts and vegetation patterns in bogs, Plant Ecol., 200, 53-68 (2009)
[16] Ghazaryan, A.; Manukian, V., Coherent structures in a population model for mussel-algae interaction, SIAM J. Appl. Dyn. Syst., 14, 893-913 (2015) · Zbl 1314.35196
[17] Gourley, S. A.; Britton, N. F.; Chaplain, M. A.J.; Byrne, H. M., Mechanisms for stabilisation and destabilisation of systems of reaction-diffusion equations, J. Math. Biol., 34, 857-877 (1996) · Zbl 0858.92006
[20] wa Kangeri, A. K.; Jansen, J. M.; Barkman, B. R.; Donker, J. J.; Joppe, D. J.; Dankers, N. M., Perturbation induced changes in substrate use by the blue mussel, Mytilus edulis, in sedimentary systems, J. Sea Res., 85, 233-240 (2014)
[21] Leach, T. H.; Williamson, C. E.; Theodore, N.; Fischer, J. M.; Olson, M. H., The role of ultraviolet radiation in the diel vertical migration of zooplanktonan experimental test of the transparency-regulator hypothesis, J. Plankton Res., 37, 886-896 (2015)
[22] Levin, S. A.; Paine, R. T., Disturbance, patch formation, and community structure, Proc. Natl. Acad. Sci. USA, 71, 2744-2747 (1974) · Zbl 0289.92008
[23] Liu, Q.-X.; Weerman, E. J.; Herman, P. M.; Olff, H.; van de Koppel, J., Alternative mechanisms alter the emergent properties of self-organization in mussel beds, Proc. R. Soc. Lond. B, 14, 20120157 (2012)
[24] Liu, Q.-X.; Doelman, A.; Rottschäfer, V.; de Jager, M.; Herman, P. M.; Rietkerk, M.; van de Koppel, J., Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proc. Natl. Acad. Sci. USA, 110, 11905-11910 (2013)
[25] Liu, Q.-X.; Weerman, E. J.; Gupta, R.; Herman, P. M.; Olff, H.; van de Koppel, J., Biogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds, J. R. Soc. Interface, 11, 20140089 (2014)
[26] Liu, Q.-X.; Herman, P. M.; Mooij, W. M.; Huisman, J.; Scheffer, M.; Olff, H.; van de Koppel, J., Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems, Nat. Commun., 5, 5234 (2014)
[27] Meron, E., Pattern-formation approach to modelling spatially extended ecosystems, Ecol. Model., 234, 70-82 (2012)
[28] Naddafi, R.; Pettersson, K.; Eklöv, P., Predation and physical environment structure the density and population size structure of zebra mussels, J. N. Am. Benthol. Soc., 29, 444-453 (2010)
[30] Nicastro, K. R.; Zardi, G. I.; McQuaid, C. D., Movement behaviour and mortality in invasive and indigenous musselsresilience and resistance strategies at different spatial scales, Mar. Ecol. Prog. Ser., 372, 119-126 (2008)
[32] Paine, R. T.; Levin, S. A., Intertidal landscapesdisturbance and the dynamics of pattern, Ecol. Monogr., 51, 145-178 (1981)
[33] Pelletier, J. D.; DeLong, S. B.; Orem, C. A.; Becerra, P.; Compton, K.; Gressett, K.; Lyons-Baral, J.; McGuire, L. A.; Molaro, J. L.; Spinler, J. C., How do vegetation bands form in dry lands? Insights from numerical modeling and field studies in southern Nevada, USA, J. Geophys. Res., 117, F04026 (2012)
[34] Ringelberg, J., Diel Vertical Migration of Zooplankton in Lakes and Oceans (2010), Springer: Springer New York
[35] Sheffer, E.; Hardenberg, J.; Yizhaq, H.; Shachak, M.; Meron, E., Emerged or imposeda theory on the role of physical templates and self-organisation for vegetation patchiness, Ecol. Lett., 16, 127-139 (2013)
[36] Sherratt, J. A., Turing bifurcations with a temporally varying diffusion coefficient, J. Math. Biol., 33, 295-308 (1995) · Zbl 0812.92024
[37] Sherratt, J. A., Diffusion driven instability in oscillating environments, Eur. J. Appl. Math., 6, 355-372 (1995) · Zbl 0847.35066
[38] Sherratt, J. A., Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations, Appl. Math. Comput., 218, 4684-4694 (2012) · Zbl 1244.65155
[39] Sherratt, J. A., History-dependent patterns of whole ecosystems, Ecol. Complex., 14, 8-20 (2013)
[40] Sherratt, J. A., Using wavelength and slope to infer the historical origin of semi-arid vegetation bands, Proc. Natl. Acad. Sci. USA, 112, 4202-4207 (2015)
[41] Siteur, K.; Siero, E.; Eppinga, M. B.; Rademacher, J.; Doelman, A.; Rietkerk, M., Beyond Turingthe response of patterned ecosystems to environmental change, Ecol. Complex., 20, 81-96 (2014)
[42] Snover, M. L.; Commito, J. A., The fractal geometry of Mytilus edulis L. spatial distribution in a soft-bottom system, J. Exp. Mar. Biol. Ecol., 223, 53-64 (1998)
[43] Stewart, J.; Parsons, A. J.; Wainwright, J.; Okin, G. S.; Bestelmeyer, B.; Fredrickson, E. L.; Schlesinger, W. H., Modelling emergent patterns of dynamic desert ecosystems, Ecol. Monogr., 84, 373-410 (2014)
[44] Suzuki, S. N.; Kachi, N.; Suzuki, J.-I., Variability of local spatial structure in a wave-regenerated Abies forest, Ecol. Res., 27, 893-901 (2012)
[45] Tam, J. C.; Scrosati, R. A., Distribution of cryptic mussel species (Mytilus edulis and M. trossulus) along wave exposure gradients on northwest Atlantic rocky shores, Mar. Biol. Res., 10, 51-60 (2014)
[46] Timm, U.; Okubo, A., Diffusion-driven instability in a predator-prey system with time-varying diffusivities, J. Math. Biol., 30, 307-320 (1992) · Zbl 0746.92026
[47] Toomey, M. B.; McCabe, D.; Marsden, J. E., Factors affecting the movement of adult zebra mussels (Dreissena polymorpha), J. N. Am. Benthol. Soc., 21, 468-475 (2002)
[48] van de Koppel, J.; Rietkerk, M.; Dankers, N.; Herman, P. M., Scale-dependent feedback and regular spatial patterns in young mussel beds, Am. Nat., 165, E66-E77 (2005)
[49] van de Koppel, J.; Gascoigne, J. C.; Theraulaz, G.; Rietkerk, M.; Mooij, W. M.; Herman, P. M., Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322, 739-742 (2008)
[50] van der Molen, F.; Puente-Rodríguez, D.; Swart, J. A.; van der Windt, H. J., The coproduction of knowledge and policy in coastal governanceintegrating mussel fisheries and nature restoration, Ocean. Coast. Manag., 106, 49-60 (2015)
[51] Wang, R. H.; Liu, Q.-X.; Sun, G. Q.; Jin, Z.; van de Koppel, J., Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, J. R. Soc. Interface, 6, 705-718 (2009)
[52] Wang, W.; Lin, Y.; Yang, F.; Zhang, L.; Tan, Y., Numerical study of pattern formation in an extended Gray-Scott model, Commun. Nonlinear Sci. Numer. Simul., 16, 2016-2026 (2011) · Zbl 1221.35456
[53] Wootton, J. T., Local interactions predict large-scale pattern in empirically derived cellular automata, Nature, 413, 841-844 (2001)
[54] Zelnik, Y. R.; Meron, E.; Bel, G., Gradual regime shifts in fairy circles, Proc. Natl. Acad. Sci. USA, 112, 12327-12331 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.