×

A reduced Galerkin finite element formulation based on proper orthogonal decomposition for the generalized KDV-RLW-Rosenau equation. (English) Zbl 1532.65085

Summary: This paper investigates reduced-order modeling of the Korteweg de Vries regularized long-wave Rosenau (KdV-RLW-Rosenau) equation using semi- and fully-discrete B-spline Galerkin approximations. The approach involves the application of a proper orthogonal decomposition (POD) method to a Galerkin finite element (GFE) formulation, resulting in a POD GFE formulation with lower dimensions and high accuracy. The error between the reduced POD GFE solution and the traditional GFE solution is analyzed using the Crank-Nicolson method. Numerical examples show that the theoretical conclusions are consistent with the results of the numerical computation, and that the POD method is effective and feasible.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)

References:

[1] Benjamin, T. B.; Bona, J. L.; Mahony, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272, 47-78 (1972) · Zbl 0229.35013 · doi:10.1098/rsta.1972.0032
[2] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag. Ser. 5, 39, 422-443 (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[3] Rosenau, P., Dynamics of dense discrete systems, Prog. Theor. Phys., 79, 1028-1042 (1988) · doi:10.1143/PTP.79.1028
[4] Bon, J.; Bryant, P. J., A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Mathematical Proceedings of the Cambridge Philosophical Society, 391-405 (1973), Cambridge: Cambridge University Press, Cambridge · Zbl 0261.76007
[5] Abdulloev, K. O.; Bogolubsky, I.; Makhankov, V. G., One more example of inelastic soliton interaction, Phys. Lett. A, 56, 427-428 (1976) · doi:10.1016/0375-9601(76)90714-3
[6] Ramos, J. I., Explicit finite difference methods for the EW and RLW equations, Appl. Math. Comput., 179, 622-638 (2006) · Zbl 1102.65092
[7] Zhang, L., A finite difference scheme for generalized regularized long-wave equation, Appl. Math. Comput., 168, 962-972 (2005) · Zbl 1080.65079
[8] Zuo, J. M., Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations, Appl. Math. Comput., 215, 835-840 (2009) · Zbl 1175.65124
[9] Rosenau, P., A quasi-continuous description of a nonlinear transmission line, Phys. Scr., 34 (1986) · doi:10.1088/0031-8949/34/6B/020
[10] Cui, Y.; Mao, D. K., Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation, J. Comput. Phys., 227, 376-399 (2007) · Zbl 1131.65073 · doi:10.1016/j.jcp.2007.07.031
[11] Razborova, P.; Moraru, L.; Biswas, A., Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity, Rom. J. Phys., 59, 658-676 (2014)
[12] Coclite, G. M.; Di Ruvo, L., A singular limit problem for conservation laws related to the Rosenau-Korteweg-de Vries equation, J. Math. Pures Appl., 107, 315-335 (2017) · Zbl 1372.35273 · doi:10.1016/j.matpur.2016.07.002
[13] Mendez, A. J., On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation, J. Differ. Equ., 269, 9051-9089 (2020) · Zbl 1450.35236 · doi:10.1016/j.jde.2020.06.027
[14] Benia, Y.; Scapellato, A., Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal., 195 (2020) · Zbl 1442.35217 · doi:10.1016/j.na.2020.111758
[15] Kaya, D.; Aassila, M., An application for a generalized KdV equation by the decomposition method, Phys. Lett. A, 299, 201-206 (2002) · Zbl 0996.35061 · doi:10.1016/S0375-9601(02)00652-7
[16] Özer, S.; Kutluay, S., An analytical-numerical method for solving the Korteweg-de Vries equation, Appl. Math. Comput., 164, 789-797 (2005) · Zbl 1070.65077
[17] Barreto, R. K.; De Caldas, C. S.; Gamboa, P.; Limaco, J., Existence of solutions to the Rosenau and Benjamin-Bona-Mahony equation in domains with moving boundary, J. Differ. Equ., 35, 281-286 (2004) · Zbl 1059.35114
[18] Liu, L.; Mei, M., A better asymptotic profile of Rosenau-Burgers equation, Appl. Math. Comput., 131, 147-170 (2002) · Zbl 1020.35097
[19] Liu, L.; Mei, M.; Wong, Y. S., Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary, Nonlinear Anal., 67, 2527-2539 (2007) · Zbl 1123.35057 · doi:10.1016/j.na.2006.08.047
[20] Mei, M., Long-time behavior of solution for Rosenau-Burgers equation (I), Appl. Anal., 63, 315-330 (1996) · Zbl 0865.35113 · doi:10.1080/00036819608840511
[21] Mei, M., Long-time behavior of solution for Rosenau-Burgers equation (II), Appl. Anal., 68, 333-356 (1998) · Zbl 0909.35122 · doi:10.1080/00036819808840635
[22] Piao, G. R.; Lee, J. Y.; Cai, G. X., Analysis and computational method based on quadratic B-spline FEM for the Rosenau-Burgers equation, Numer. Methods Partial Differ. Equ., 32, 877-895 (2016) · Zbl 1352.65366 · doi:10.1002/num.22034
[23] Piao, G. R.; Yao, F. X.; Zhao, W. J., Reduced basis finite element methods for the Korteweg-deVries-Burgers equation, Int. J. Numer. Anal. Model., 19, 369-385 (2022) · Zbl 07524476
[24] Mittal, R. C.; Jain, R. K., Numerical solution of general Rosenau-RLW equation using quintic b-splines collocation method, Commun. Nonlinear Anal., 2012, 1-19 (2012)
[25] Atouani, N.; Omrani, K., Galerkin finite elemnt method for the Rosenau-RLW equation, Comput. Math. Appl., 66, 289-303 (2013) · Zbl 1347.65148 · doi:10.1016/j.camwa.2013.04.029
[26] Pan, X.; Zheng, K.; Zhang, L., Finite difference discretization of the Rosenau-RLW equation, Appl. Anal., 92, 2578-2589 (2013) · Zbl 1290.65079 · doi:10.1080/00036811.2012.750296
[27] Zuo, J. M.; Zhang, Y. M.; Zhang, T. D.; Cheng, F., A new conservative difference scheme for the general Rosenau-RLW equation, Bound. Value Probl., 2010 (2010) · Zbl 1206.65216 · doi:10.1155/2010/516260
[28] Hu, J.; Wang, Y., A high-accuracy linear conservative difference scheme for Rosenau-RLW equation, Math. Probl. Eng., 2013, 1-8 (2013) · Zbl 1299.65187 · doi:10.1155/2013/175616
[29] Razborova, P.; Moraru, L.; Biswas, A. R., Perturbation of dispersive shallow water waves with Rosenau-kdv-RLW equation and power law nonlinearity, Rom. J. Phys., 59, 658-676 (2014)
[30] Razborova, P.; Ahmed, B.; Biswas, A. R., Solitons, shock waves and conservation laws of roseanu-kdv-RLW equation with power law nonlinearity, Appl. Math. Inf. Sci., 8, 485-491 (2014) · doi:10.12785/amis/080205
[31] Razborova, P.; Kara, A. H.; Biswas, A. R., Additional conservation laws for roseanu-kdv-RLW equation with power law nonlinearity, Nonlinear Dyn., 79, 743-758 (2015) · Zbl 1331.35023 · doi:10.1007/s11071-014-1700-y
[32] Wongsaijai, B.; Poochinapan, K., A three-level average finite difference scheme to solve equation obtained by coupling the Rosenau-kdv and the Rosenau-RLW equation, Appl. Math. Comput., 245, 289-304 (2014) · Zbl 1336.65143
[33] Pan, X.; Wang, Y.; Zhang, L., Numerical analysis of a pseudo-compact c-n conservative scheme for the Rosenau-kdv equation coupling with the Rosenau-RLW equation, Bound. Value Probl., 2015 (2015) · Zbl 1320.65119 · doi:10.1186/s13661-015-0328-2
[34] Turgut, A.; Karakoc, S. B.G.; Biswas, A., Numerical scheme to dispersive shallow water waves, J. Comput. Theor. Nanosci., 13, 7084-7092 (2016) · doi:10.1166/jctn.2016.5675
[35] Cai, J. X.; Hong, Q.; Yang, B., Local structure-preserving methods for the generalized Rosenau-RLW-kdv equation with power law nonlinearity, Chin. Phys. B, 26 (2017) · doi:10.1088/1674-1056/26/10/100202
[36] He, D.; Pan, K., A linearly implicit conservative finite difference scheme for the generalized Rosenau-Kawahara-RLW equation, Appl. Math. Comput., 271, 323-336 (2015) · Zbl 1410.65312
[37] Avazzadeh, Z.; Nikan, O.; Machado, J. A.T., Solitary wave solutions of the generalized Rosenau-KdV-RLW equation, Mathematics, 8 (2020) · doi:10.3390/math8091601
[38] Joslin, R. D.; Gunzburger, M. D.; Nicolaides, R. A.; Erlebacher, G.; Hussaini, M. Y., Self-contained automated methodology for optimal flow control, AIAA J., 35, 816-824 (1997) · Zbl 0901.76067 · doi:10.2514/2.7452
[39] Kunisch, K.; Volkwein, S., Control of Burgers’ equation by a reduced order approach using proper orthogonal decomposition, J. Optim. Theory Appl., 102, 345-371 (1999) · Zbl 0949.93039 · doi:10.1023/A:1021732508059
[40] Ly, H. V.; Tran, H. T., Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor, Q. Appl. Math., 60, 631-656 (2002) · Zbl 1146.76631 · doi:10.1090/qam/1939004
[41] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coheren Structures, Dynamical Systems and Symmetry (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0890.76001 · doi:10.1017/CBO9780511622700
[42] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90, 117-148 (2001) · Zbl 1005.65112 · doi:10.1007/s002110100282
[43] Burkardt, J.; Gunzburger, M.; Lee, H.-C., Centroidal Voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28, 459-484 (2006) · Zbl 1111.65084 · doi:10.1137/5106482750342221x
[44] Burkardt, J.; Gunzburger, M.; Lee, H.-C., POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Eng., 196, 337-355 (2006) · Zbl 1120.76323 · doi:10.1016/j.cma.2006.04.004
[45] Luo, Z. D.; Zhou, Y. J.; Yang, X. Z., A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation, Appl. Numer. Math., 59, 1933-1946 (2009) · Zbl 1169.65096 · doi:10.1016/j.apnum.2008.12.034
[46] Burman, E.; Stamm, B., Low order discontinuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 508-533 (2008) · Zbl 1190.65170 · doi:10.1137/070685105
[47] Ganesh, M.; Hesthaven, J. S.; Stamm, B., A reduced basis method for electromagnetic scattering by multiple particles in three dimensions, J. Comput. Phys., 231, 7756-7779 (2012) · Zbl 1254.78012 · doi:10.1016/j.jcp.2012.07.008
[48] Herbst, M. F.; Stamm, B.; Wessel, S.; Rizzi, M., Surrogate models for quantum spin systems based on reduced-order modeling, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.045303
[49] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531 (2015) · Zbl 1339.37089 · doi:10.1137/130932715
[50] Chen, Y. L.; Ji, L. J.; Wang, Z., A hyper-reduced MAC scheme for the parametric Stokes and Navier-Stokes equations, J. Comput. Phys., 466 (2022) · Zbl 07561089 · doi:10.1016/j.jcp.2022.111412
[51] Hou, S. J.; Chen, Y. L.; Xia, Y. H., Fast L2 optimal mass transport via reduced basis methods for the Monge-Ampère equation, SIAM J. Sci. Comput., 44, A3536-A3559 (2022) · Zbl 1509.65109 · doi:10.1137/21M1463720
[52] Yu, J.; Hesthaven, J. S., Model order reduction for compressible flows solved using the discontinuous Galerkin methods, J. Comput. Phys., 468 (2022) · Zbl 07578888 · doi:10.1016/j.jcp.2022.111452
[53] Yu, J.; Ray, D.; Hesthaven, J. S., Fourier collocation and reduced basis methods for fast modeling of compressible flows, Commun. Comput. Phys., 32, 595-637 (2022) · Zbl 1500.76064 · doi:10.4208/cicp.OA-2021-0180
[54] Majda, A. J.; Qi, D., Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60, 491-549 (2018) · Zbl 1393.76041 · doi:10.1137/16M1104664
[55] Chen, D.; Li, Q.; Song, H., Error analysis of a stable reduced order model based on the proper orthogonal decomposition method for the Allen-Cahn-Navier-Stokes system, Comput. Methods Appl. Mech. Eng., 401 (2022) · Zbl 1507.74458 · doi:10.1016/j.cma.2022.115661
[56] Li, K.; Huang, T.-Z.; Li, L.; Lanteri, S., Simulation of the interaction of light with 3-D metallic nanostructures using a proper orthogonal decomposition-Galerkin reduced-order discontinuous Galerkin time-domain method, Numer. Methods Partial Differ. Equ., 39, 932-954 (2023) · Zbl 07776946 · doi:10.1002/num.22911
[57] Apolinar-Fernandez, A.; Ramos, J. I., Numerical solution of the generalized, dissipative KdV-RLW-Rosenau equation with a compact method, Commun. Nonlinear Sci. Numer. Simul., 60, 165-183 (2018) · Zbl 1456.76082 · doi:10.1016/j.cnsns.2018.01.010
[58] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, 97-111 (2002), New York: Springer, New York · Zbl 1012.65115 · doi:10.1007/978-1-4757-3658-8
[59] Ciarlet, P. G., The Finite Element Mehtod for Elliptic Problems (1978), Amsterdam: North-Holland, Amsterdam · Zbl 0383.65058
[60] Stoer, J.; Bulirsch, R., Introduction to Numerical Analysis, 97-111 (2002), New York: Springer, New York · Zbl 1004.65001 · doi:10.1007/978-0-387-21738-3
[61] Prenter, P. M., Splines and Variational Methods (1975), New York: Wiley, New York · Zbl 0344.65044
[62] Aksan, E. N., Quadratic B-spline finite element method for numerical solution of the Burgers equation, Appl. Math. Comput., 174, 884-896 (2006) · Zbl 1090.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.