×

More on superstring chiral measures. (English) Zbl 1207.81132

Summary: In this paper we study the expressions of the superstring chiral measures for \(g\leq 5\). In genus three and four we obtain certain new equivalent expressions for the measures which are functions of higher powers of theta constants. For \(g=3\) we show that the measures can be written in terms of fourth power of theta constants and for \(g=4\) in terms of squares of theta constants. In both cases the forms \(\Xi_8^{(g)}[0^{(g)}]\) appearing in the expression of the measures are defined on the whole Siegel upper half space. Instead, for \(g=5\) we find a form \(\Xi_8^{(5)}[0^{(5)}]\) which is a polynomial in the classical theta constants, well defined on the Siegel upper half space and satisfying some suitable constraints on the moduli space of curves (and not on the whole Siegel upper half space) that could be a candidate for the genus five superstring measure. Moreover, we discuss the problem of the uniqueness of this form in genus five. We also determine the dimension of certain spaces of modular forms and reinterpret the vanishing of the cosmological constant in terms of group representations.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
46T12 Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds
14K25 Theta functions and abelian varieties
14H15 Families, moduli of curves (analytic)
20C15 Ordinary representations and characters
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)

References:

[1] Andrianov, A. N.; Zhuravlev, V. G., Modular Forms and Hecke Operators (1995), American Mathematical Society · Zbl 0838.11032
[2] Atick, J. J.; Moore, G. W.; Sen, A., Some global issues in string perturbation theory, Nucl. Phys. B, 308, 1-101 (1988)
[3] Atick, J. J.; Rabin, J. M.; Sen, A., An ambiguity in fermionic string perturbation theory, Nucl. Phys. B, 299, 279-294 (1988)
[4] Belavin, A. A.; Knizhnik, V. G., Algebraic geometry and the geometry of quantum strings, Phys. Lett. B, 168, 201-206 (1986) · Zbl 0693.58043
[5] Belavin, A. A.; Knizhnik, V. G., Complex geometry and the theory of quantum string, Sov. Phys. JETP. Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., 91, 364-390 (1986) · Zbl 0693.58043
[6] Belavin, A. A.; Knizhnik, V. G.; Morozov, A.; Perelemov, A., Two- and three-loop amplitudes in bosonic string theory, Phys. Lett. B. Phys. Lett. B, Zh. Eksp. Teor. Fiz., 43, 319 (1986)
[7] Cacciatori, S. L.; Dalla Piazza, F., Two loop superstring amplitudes and \(S_6\) representation, Lett. Math. Phys., 83, 127-138 (2008) · Zbl 1159.81038
[8] S.L. Cacciatori, F. Dalla Piazza, Modular forms and superstrings amplitudes, in: Gerold B. Charney (Ed.), Superstring Theory in the 21st Century, Horizons in World Physics, vol. 270, Nova Publishers, in press.; S.L. Cacciatori, F. Dalla Piazza, Modular forms and superstrings amplitudes, in: Gerold B. Charney (Ed.), Superstring Theory in the 21st Century, Horizons in World Physics, vol. 270, Nova Publishers, in press. · Zbl 1292.81108
[9] Cacciatori, S. L.; Dalla Piazza, F.; van Geemen, B., Modular forms and three loop superstring amplitudes, Nucl. Phys. B, 800, 565-590 (2008) · Zbl 1292.81108
[10] Cacciatori, S. L.; Dalla Piazza, F.; van Geemen, B., Genus four superstring measures, Lett. Math. Phys., 85, 185-193 (2008) · Zbl 1162.81032
[11] Cerchiai, B. L.; van Geemen, B., From qubits to \(E7\) · Zbl 1314.81044
[12] D’Hoker, E.; Phong, D. H., Two-loop superstrings IV: The cosmological constant and modular forms, Nucl. Phys. B, 639, 129-181 (2002) · Zbl 0997.81083
[13] D’Hoker, E.; Phong, D. H., Asyzygies, modular forms, and the superstring measure I, Nucl. Phys. B, 710, 58-82 (2005) · Zbl 1115.81376
[14] D’Hoker, E.; Phong, D. H., Asyzygies, modular forms, and the superstring measure II, Nucl. Phys. B, 710, 83-116 (2005) · Zbl 1115.81377
[15] Dalla Piazza, F.; Girola, D.; Cacciatori, S. L., Classical theta constants vs. lattice theta series, and super string partition functions, JHEP, in press · Zbl 1294.81229
[16] Dalla Piazza, F.; van Geemen, B., Siegel modular forms and finite symplectic groups, Adv. Theor. Math. Phys., 13, 6, 1771-1814 (2009) · Zbl 1200.81091
[17] Dunin-Barkowski, P.; Morozov, A.; Sleptsov, A., Lattice theta constants versus Riemann theta constants and NSR superstring measures, JHEP, 0910, 072 (2009)
[18] Frame, J. S., The classes and representations of the group of 27 lines and 28 bitangents, Ann. Mat. Pura Appl., 32, 83-119 (1951) · Zbl 0045.00505
[19] Frame, J. S., Some characters of orthogonal groups over the field of two elements, (Proc. of the Second Inter. Conf. on the Theory of Groups. Proc. of the Second Inter. Conf. on the Theory of Groups, Lecture Notes in Math., vol. 372 (1974), Springer), 298-314 · Zbl 0285.20016
[20] Grushevsky, S., Superstring scattering amplitudes in higher genus, Commun. Math. Phys., 287, 749-767 (2009) · Zbl 1173.81016
[21] Grushevsky, S.; Salvati Manni, R., The superstring cosmological constant and the Schottky form in genus 5, Am. J. Math., in press · Zbl 1225.81114
[22] Grushevsky, S.; Salvati Manni, R., The vanishing of two-point functions for three-loop superstring scattering amplitudes, Commun. Math. Phys., 294, 2, 343-352 (2010) · Zbl 1207.81122
[23] Igusa, J., Theta Functions (1972), Springer · Zbl 0251.14016
[24] Jacobson, N., Basic Algebra I (1974), W.H. Freeman and Company · Zbl 0284.16001
[25] Matone, M.; Volpato, R., Getting superstring amplitudes by degenerating Riemann surfaces · Zbl 1206.81107
[26] Matone, M.; Volpato, R., Superstring measure and non-renormalization of the three-point amplitude, Nucl. Phys. B, 806, 735-747 (2009) · Zbl 1192.81281
[27] Morozov, A., NSR measures on hyperelliptic locus and non-renormalization of \(1, 2, 3\)-point functions, Phys. Lett. B, 664, 116-122 (2008) · Zbl 1328.81168
[28] Morozov, A., NSR superstring measures revisited, JHEP, 0805, 086 (2008)
[29] Morozov, A., Explicit formulae for one, two, three and four loop string amplitudes, Phys. Lett. B, 184, 171-186 (1987)
[30] Nebe, G., Kneser-Hecke-operators in coding theory, Abh. Math. Sem. Univ. Hamburg, 76, 79-90 (2006) · Zbl 1122.94053
[31] Oura, M.; Poor, C.; Salvati Manni, R.; Yuen, D. S., Modular form of weight 8 for \(\Gamma_g(1, 2)\), Math. Ann., 346, 2, 477-498 (2010) · Zbl 1244.11050
[32] Poor, C., Schottky’s form and the hyperelliptic locus, Proc. Am. Math. Soc., 124, 1987-1991 (1996) · Zbl 0855.11023
[33] Rauch, H. E.; Lebowitz, A., Elliptic Functions, Theta Funcitons, and Riemann Surfaces (1974), The Williams & Wilkins Company · Zbl 0292.30015
[34] Runge, B., On Siegel modular forms, part I, J. Reine Angew. Math., 436, 57-85 (1993) · Zbl 0772.11015
[35] Runge, B., On Siegel modular forms, part II, Nagoya Math. J., 138, 179-197 (1995) · Zbl 0824.11031
[36] Sagan, B. E., The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions (2001), Springer · Zbl 0964.05070
[37] Salvati Manni, R., Remarks on superstring amplitudes in higher genus, Nucl. Phys. B, 801, 163-173 (2008) · Zbl 1189.81182
[38] Salvati Manni, R., Modular varieties with level 2 theta structure, Am. J. Math., 116, 1489-1511 (1994) · Zbl 0818.11023
[39] Salvati Manni, R., On the nonidentically zero Nullwerte of Jacobians of theta functions with odd characteristics, Adv. Math., 47, 1, 88-104 (1983) · Zbl 0517.14013
[40] van Geemen, B., Siegel modular forms vanishing on the moduli space of curves, Invent. Math., 78, 329-349 (1984) · Zbl 0568.14015
[41] van Geemen, B.; van der Geer, G., Kummer varieties and moduli spaces of abelian varieties, Am. J. Math., 108, 615-642 (1986) · Zbl 0612.14044
[42] van Geemen, B., The Schottky problem and second order theta functions, (Workshop on Abelian Varieties and Theta Functions (Spanish). Workshop on Abelian Varieties and Theta Functions (Spanish), Morelia, 1996. Workshop on Abelian Varieties and Theta Functions (Spanish). Workshop on Abelian Varieties and Theta Functions (Spanish), Morelia, 1996, Aportaciones Mat. Investig., vol. 13 (1998), Soc. Mat. Mexicana: Soc. Mat. Mexicana México), 41-84 · Zbl 0968.14015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.