×

Remarks on superstring amplitudes in higher genus. (English) Zbl 1189.81182

Summary: Very recently, Grushevsky continued D’Hoker and Phong’s program of finding the chiral superstring measure from first principles by constructing modular forms satisfying certain factorization constraints. He has proposed an ansatz in genus 4 and conjectured a possible formula for the superstring measure in any genus, subject to the condition that certain modular forms admit holomorphic roots. In this note we want to give some evidence that Grushevsky’s approach seems to be very fruitful.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
11Z05 Miscellaneous applications of number theory
14H15 Families, moduli of curves (analytic)

References:

[1] D’Hoker, E.; Phong, D. H., Two-loop superstrings I, main formulas, Phys. Lett. B, 529, 241-255 (2002) · Zbl 0990.81100
[2] D’Hoker, E.; Phong, D. H., Two-loop superstrings II, the chiral measure on moduli space, Nucl. Phys. B, 636, 3-60 (2002) · Zbl 0996.81079
[3] D’Hoker, E.; Phong, D. H., Two-loop superstrings III, slice independence and absence of ambiguities, Nucl. Phys. B, 636, 61-79 (2002) · Zbl 0996.81080
[4] D’Hoker, E.; Phong, D. H., Two-loop superstrings IV, the cosmological constant and modular forms, Nucl. Phys. B, 639, 129-181 (2002) · Zbl 0997.81083
[5] D’Hoker, E.; Phong, D. H., Asyzygies, modular forms and the superstring measure I, Nucl. Phys. B, 710 (2005) · Zbl 1115.81376
[6] D’Hoker, E.; Phong, D. H., Asyzygies, modular forms and the superstring measure II, Nucl. Phys. B, 710 (2005) · Zbl 1115.81377
[7] Cacciatori, S. L.; Dalla Piazza, F.; van Geemen, B., Modular forms and three loop superstring amplitudes · Zbl 1292.81108
[8] Igusa, J.-I., Theta Functions, Die Grundlehren der Mathematischen Wissenschaften, vol. 194 (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0157.20902
[9] Igusa, J.-I., On the graded ring of theta-constants, Am. J. Math., 86, 219-246 (1964) · Zbl 0146.31703
[10] Salvati Manni, R., On the dimension of the vector space \(C [\theta_m]_4\), Nagoya Math. J., 98, 99-107 (1985) · Zbl 0598.14035
[11] J.-I. Igusa, Schottky’s invariant and quadratic forms, E.B. Christoffel Int. Symp., Aachen (1981) 352-362; J.-I. Igusa, Schottky’s invariant and quadratic forms, E.B. Christoffel Int. Symp., Aachen (1981) 352-362 · Zbl 0482.10030
[12] Igusa, J.-I., On Jacobi’s derivative formula and its generalizations, Am. J. Math., 102, 409-446 (1980) · Zbl 0433.14033
[13] Salvati Manni, R., Thetanullwerte and stable modular forms, Am. J. Math., 111, 435-455 (1989) · Zbl 0682.10019
[14] Grushevsky, S., Superstring scattering amplitudes in higher genus · Zbl 1173.81016
[15] Tsuyumine, S., Thetanullwerte on a moduli space of curves and hyperelliptic loci, Math. Z., 207, 539-568 (1991) · Zbl 0752.14019
[16] Freitag, E., Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften, vol. 254 (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0498.10016
[17] Salvati Manni, R., Modular forms of the fourth degree. (Remark on a Paper of Harris and Morrison), (Proc. Conf., Trento/Italy 1990. Proc. Conf., Trento/Italy 1990, Lecture Notes in Mathematics, vol. 1515 (1992)), 106-111 · Zbl 0769.11025
[18] Dalla Piazza, F.; van Geemen, B.
[19] Conway, H.; Sloane, N. J.A., Sphere Packings, Lattices and Groups, Die Grundlehren der Mathematischen Wissenschaften, vol. 290 (1988), Springer: Springer New York · Zbl 0634.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.