×

Vector-valued operators, optimal weighted estimates and the \(C_p\) condition. (English) Zbl 1450.42011

This article contains a wide variety of results on optimal weighted estimates and sparse dominations.
The first part of the paper provides results concerning the \(C_p\) classes introduced by Muckenhoupt. The \(C_p\) classes contain the \(A_\infty\) class for all \( p > 0 \). B. Muckenhoupt [in: Functional analysis and approximation, Proc. Conf., Oberwolfach 1980, ISNM 60, 219–231 (1981; Zbl 0465.42014)] showed that if the Coifman-Fefferman estimate (labeled (1.1)) holds for the Hilbert transform with \(p>1\), then the weight involved must be a \(C_p\) weight. At the same time, he conjectured that the \(C_p\) condition is also sufficient for the Coifman-Fefferman estimate to hold.
In this context, the Coifman-Fefferman estimate is extended to the full expected range \(0 < p < \infty\) to operators that include Calderón-Zygmund operators and their commutators (including \(k\)-order, and vector-valued extensions), weakly strongly singular integral operators, pseudo-differential operators that belong to the Hörmander class, oscillatory integral operators and to some vector-valued operators. Furthermore, a suitable Coifman-Fefferman estimate for the fractional integral is deduced from one of the main proofs.
Also, a multilinear version of the Coifman-Fefferman estimate is extended to the full expected range \(0 < p < \infty \) for \(m\)-linear Calderón-Zygmund operators.
Additionally, a Coifman-Fefferman estimate where the strong norm is replaced by the weak norm, is obtained for \(w\)-Calderón-Zygmund operators with \(w\) satisfying a log-Dini condition, within the range \((1,\infty)\). Likewise, Coifman-Fefferman estimates are obtained for commutators which are completely new in both the scalar and the vector-valued cases.
On the other hand, sparse dominations are proved for vector-valued extensions of the maximal function, Calderón-Zygmund operators and their commutators, rough singular integral operator and Bochner-Riesz multiplier at the critical index. In addition, the paper contains an appendix where quantitative estimates for the operators mentioned above follow from the sparse domination results. These estimates include \(A_p\) weak and strong type estimates, endpoint estimates and Fefferman-Stein type inequalities. Also, quantitative unweighted estimates are given for Calderón-Zygmund operators satisfying the Dini condition and their vector-valued counterparts.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis

Citations:

Zbl 0465.42014

References:

[1] Álvarez, J.; Hounie, J.; Pérez, C., A pointwise estimate for the kernel of a pseudo-differential operator with applications, Rev Un Mat Argentina, 37, 184-199 (1991) · Zbl 0798.35171
[2] Álvarez, J.; Pérez, C., Estimates with A_∞ weights for various singular integral operators, Boll Unione Mat Ital (9), 7, 123-133 (1994) · Zbl 0807.42013
[3] Conde-Alonso, J. M.; Culiuc, A.; Di, P. F., A sparse domination principle for rough singular integrals, Anal PDE, 10, 1255-1284 (2017) · Zbl 1392.42011 · doi:10.2140/apde.2017.10.1255
[4] Cruz-Uribe, D.; Martell, J. M.; Pérez, C., Sharp weighted estimates for classical operators, Adv Math, 229, 408-441 (2012) · Zbl 1236.42010 · doi:10.1016/j.aim.2011.08.013
[5] Culiuc A, Di Plinio F, Ou Y. A sparse estimate for multisublinear forms involving vector-valued maximal functions. In: Bruno Pini Mathematical Analysis Seminar. Lund: DOAJ, 2018, 168-184 · Zbl 1445.42014
[6] Curbera, G. P.; García-Cuerva, J.; Martell, J. M., Extrapolation with weights, rearrangement invariant function spaces, modular inequalities and applications to singular integrals, Adv Math, 203, 256-318 (2006) · Zbl 1098.42017 · doi:10.1016/j.aim.2005.04.009
[7] Di Plinio F, Hytönen T, Li K. Sparse bounds for maximal rough homogeneous integrals via the Fourier transform. Ann Inst Fourier (Grenoble), 2020, in press
[8] Domingo-Salazar, C.; Lacey, M. T.; Rey, G., Borderline weak type estimates for singular integrals and square functions, Bull Lond Math Soc, 48, 63-73 (2016) · Zbl 1343.42012 · doi:10.1112/blms/bdv090
[9] Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math, 124, 9-36 (1970) · Zbl 0188.42601 · doi:10.1007/BF02394567
[10] Fefferman, C.; Stein, E. M., H^p spaces of several variables, Acta Math, 129, 137-193 (1972) · Zbl 0257.46078 · doi:10.1007/BF02392215
[11] Grafakos, L., Classical Fourier Analysis (2014), New York: Springer, New York · Zbl 1304.42001
[12] Grafakos, L.; Torres, R. H., Multilinear Calderón-Zygmund theory, Adv Math, 165, 124-164 (2002) · Zbl 1032.42020 · doi:10.1006/aima.2001.2028
[13] Hörmander, L., Pseudo-differential operators and hypoelliptic equations, Proc Sympos Pure Math, 10, 138-183 (1967) · Zbl 0167.09603 · doi:10.1090/pspum/010/0383152
[14] Hytönen, T. P.; Li, K., Weak and strong A_p-A_∞ estimates for square functions and related operators, Proc Amer Math Soc, 146, 2497-2507 (2018) · Zbl 1390.42024 · doi:10.1090/proc/13908
[15] Hytönen, T. P.; Roncal, L.; Tapiola, O., Quantitative weighted estimates for rough homogeneous singular integrals, Israel J Math, 218, 133-164 (2017) · Zbl 1368.42015 · doi:10.1007/s11856-017-1462-6
[16] Ibañez-Firnkorn G H, Rivera-Ríos I P. Sparse and weighted estimates for generalized Hörmander operators and commutators. Arxiv:1704.01018, 2017
[17] Journé, J-L, Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón (1983), New York: Springer-Verlag, New York · Zbl 0508.42021
[18] Lerner, A. K., A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull Lond Math Soc, 42, 843-856 (2010) · Zbl 1203.42023 · doi:10.1112/blms/bdq042
[19] Lerner, A. K., Some remarks on the Fefferman-Stein inequality, J Anal Math, 112, 329-349 (2010) · Zbl 1214.42031 · doi:10.1007/s11854-010-0032-1
[20] Lerner, A. K., On pointwise estimates involving sparse operators, New York J Math, 22, 341-349 (2016) · Zbl 1347.42030
[21] Lerner A K. A weak type estimate for rough singular integrals. Rev Mat Iberoam 2020, in press · Zbl 1429.42017
[22] Lerner, A. K.; Nazarov, F., Intuitive dyadic calculus: The basics, Expo Math, 37, 225-265 (2019) · Zbl 1440.42062 · doi:10.1016/j.exmath.2018.01.001
[23] Lerner, A. K.; Ombrosi, S.; Rivera-Ríos, I. P., On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv Math, 319, 153-181 (2017) · Zbl 1379.42007 · doi:10.1016/j.aim.2017.08.022
[24] Lerner, A. K.; Pérez, C.; Ombrosi, S., A_1 bounds for Calderón-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math Res Lett, 16, 149-156 (2009) · Zbl 1169.42006 · doi:10.4310/MRL.2009.v16.n1.a14
[25] Lerner, A. K.; Pérez, C.; Ombrosi, S., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv Math, 220, 1222-1264 (2009) · Zbl 1160.42009 · doi:10.1016/j.aim.2008.10.014
[26] Li, K., Sharp weighted estimates involving one supremum, C R Math Acad Sci Paris, 355, 906-909 (2017) · Zbl 1373.42018 · doi:10.1016/j.crma.2017.07.016
[27] Li K, Pérez C, Rivera-Ríos I P, et al. Weighted norm inequalities for rough singular integral operators. J Geom Anal, 2019, in press · Zbl 1431.42029
[28] Muckenhoupt, B., Norm inequalities relating the Hilbert transform to the Hardy-Littlewood maximal function, Functional Analysis and Approximation, 219-231 (1981), Basel-Boston: Birkhäuser, Basel-Boston · Zbl 0465.42014
[29] Ortiz-Caraballo, C.; Pérez, C.; Rela, E., Exponential decay estimates for singular integral operators, Math Ann, 357, 1217-1243 (2013) · Zbl 1297.42025 · doi:10.1007/s00208-013-0940-3
[30] Pérez, C., Endpoint estmates for commutators of singular integral operators, J Funct Anal, 128, 163-185 (1995) · Zbl 0831.42010 · doi:10.1006/jfan.1995.1027
[31] Pérez, C., Sharp weighted inequalities for the vector-valued maximal function, Trans Amer Math Soc, 352, 3265-3288 (2000) · Zbl 0944.42012 · doi:10.1090/S0002-9947-99-02573-8
[32] Pérez, C.; Rivera-Ríos, I. P., Three observations on commutators of singular integral operators with BMO functions, Harmonic Analysis, Partial Differential Equations, Banach spaces, and Operator Theory, 87-304 (2017), Cham: Springer, Cham · Zbl 1387.42023
[33] Pérez C, Rivera-Ríos I P, Roncal L. A_1 theory of weights for rough homogeneous singular integrals and commutators. Ann Sc Norm Super Pisa Cl Sci (5), 2020, in press · Zbl 1411.74037
[34] Pérez, C.; Trujillo-Gonzalez, R., Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math J, 55, 109-129 (2003) · Zbl 1053.42021 · doi:10.2748/tmj/1113247449
[35] Phong, D. H.; Stein, E. M., Hilbert integrals, singular integrals and Radon transforms, Acta Math, 157, 99-157 (1985) · Zbl 0622.42011 · doi:10.1007/BF02392592
[36] Pick, L.; Kufner, A.; John, O., Function Spaces (Volume 1) (2013), Berlin: Walter de Gruyter, Berlin · Zbl 1275.46002
[37] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), New York: Marcel Dekker, New York · Zbl 0724.46032
[38] Rivera-Ríos; Israel, P., Improved A_1-A_∞ and related estimates for commutators of rough singular integrals, Proc Edinb Math Soc (2), 61, 1069-1086 (2018) · Zbl 1440.42068 · doi:10.1017/S0013091518000238
[39] Sawyer, E. T., Norm inequalities relating singular integrals and the maximal function, Studia Math, 75, 253-263 (1983) · Zbl 0528.44002 · doi:10.4064/sm-75-3-253-263
[40] Yabuta, K., Sharp maximal function and C_p condition, Arch Math, 55, 151-155 (1990) · Zbl 0663.42021 · doi:10.1007/BF01189135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.