×

Sharp weighted inequalities for the vector-valued maximal function. (English) Zbl 0944.42012

Summary: We prove in this paper some sharp weighted inequalities for the vector-valued maximal function \(\overline M_q\) of Fefferman and Stein defined by \[ \overline M_qf(x)=\left(\sum_{i=1}^{\infty}(Mf_i(x))^{q}\right)^{1/q}, \] where \(M\) is the Hardy-Littlewood maximal function. As a consequence we derive the main result establishing that in the range \(1<q<p<\infty\) there exists a constant \(C\) such that \[ \int_{\mathbf{R}^{n}}\overline M_qf(x)^p w(x) dx\leq C \int_{\mathbf{R}^n}|f(x)|^{p}_{q} M^{[\frac pq]+1}w(x) dx. \] Furthermore, the result is sharp since \(M^{[\frac pq]+1}\) cannot be replaced by \(M^{[\frac pq]}\). We also show the following endpoint estimate \[ w(\{x\in \mathbf{R}^n:\overline M_qf(x)>\lambda\}) \leq \frac C\lambda \int_{\mathbf{R}^n} |f(x)|_q Mw(x) dx, \] where \(C\) is a constant independent of \(\lambda\).

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B15 Multipliers for harmonic analysis in several variables
Full Text: DOI

References:

[1] Kenneth F. Andersen and Russel T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980/81), no. 1, 19 – 31. · Zbl 0448.42016
[2] A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356 – 365. · Zbl 0103.33402
[3] D. Cruz-Uribe, SFO and C. Pércz, Two weight extrapolation via the maximal operator, preprint.
[4] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217 – 246. · Zbl 0575.42025 · doi:10.1007/BF02567411
[5] Sagun Chanillo and Richard L. Wheeden, Some weighted norm inequalities for the area integral, Indiana Univ. Math. J. 36 (1987), no. 2, 277 – 294. · Zbl 0598.34019 · doi:10.1512/iumj.1987.36.36016
[6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107 – 115. · Zbl 0222.26019 · doi:10.2307/2373450
[7] José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. · Zbl 0578.46046
[8] Miguel de Guzmán, Differentiation of integrals in \?\(^{n}\), Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. · Zbl 0598.28006
[9] V. Kokilashvili, Maximal inequalities and multipliers in weighted Lizorkin-Triebel spaces, Soviet Math. Dokl. 19 (2), 272-276. · Zbl 0396.46034
[10] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207 – 226. · Zbl 0236.26016
[11] C. J. Neugebauer, Inserting \?_{\?}-weights, Proc. Amer. Math. Soc. 87 (1983), no. 4, 644 – 648. · Zbl 0521.42019
[12] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted \?^{\?}-spaces with different weights, Proc. London Math. Soc. (3) 71 (1995), no. 1, 135 – 157. · Zbl 0829.42019 · doi:10.1112/plms/s3-71.1.135
[13] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296 – 308. · Zbl 0797.42010 · doi:10.1112/jlms/49.2.296
[14] Y. Rakotondratsimba, A characterization of a two weight norm vector-valued inequality for maximal operators, Georgian Math. J. 5 (1998), 583-600. · Zbl 0916.42011
[15] José L. Rubio de Francia, Francisco J. Ruiz, and José L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), no. 1, 7 – 48. · Zbl 0627.42008 · doi:10.1016/0001-8708(86)90086-1
[16] Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1 – 11. · Zbl 0508.42023
[17] J. Michael Wilson, A sharp inequality for the square function, Duke Math. J. 55 (1987), no. 4, 879 – 887. · Zbl 0639.42017 · doi:10.1215/S0012-7094-87-05542-6
[18] J. M. Wilson, Erratum to: ”Weighted norm inequalities for the continuous square function” [Trans. Amer. Math. Soc. 314 (1989), no. 2, 661 – 692; MR0972707 (91e:42025)], Trans. Amer. Math. Soc. 321 (1990), no. 1, 415. , https://doi.org/10.1090/S0002-9947-1990-1046837-8 J. Michael Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer. Math. Soc. 314 (1989), no. 2, 661 – 692. · Zbl 0689.42016
[19] J. Michael Wilson, \?^{\?} weighted norm inequalities for the square function, 0&lt;\?&lt;2, Illinois J. Math. 33 (1989), no. 3, 361 – 366. · Zbl 0684.42010
[20] J. Michael Wilson, Chanillo-Wheeden inequalities for 0&lt;\?\le 1, J. London Math. Soc. (2) 41 (1990), no. 2, 283 – 294. · Zbl 0712.42032 · doi:10.1112/jlms/s2-41.2.283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.