×

A quasi-continuum model for human erythrocyte membrane based on the higher order Cauchy-Born rule. (English) Zbl 1295.74053

Summary: A nanoscale quasi-continuum (QC) model for exploring the mechanical properties of human erythrocyte/red blood cell (RBC) membranes is presented in this paper. The so-called higher order Cauchy-Born rule (HCB rule) is utilized as the linkage between the deformation of the spectrin network/cytoskeleton and that of the corresponding equivalent continuum. By incorporating the second order deformation gradients into kinematic description, the resulting QC model can capture the curvature effect of nanoscale membranes accurately in a geometrically consistent way. Based on the proposed QC model, a variationally consistent meshless computational scheme is developed for simulating the finite deformation of human erythrocyte/RBCs. The obtained deformation and wrinkling patterns are in good agreement with those from the existing experiments.

MSC:

74K15 Membranes
92C37 Cell biology
74L15 Biomechanical solid mechanics
Full Text: DOI

References:

[1] An, X. L.; Mohandas, N., Disorders of red cell membrane, Br. J. Hematol., 141, 367-375 (2008)
[2] Bratosin, D.; Tissier, J. P.; Lapillonne, H.; Hermine, O.; de Villemeur, T. B.; Cotoraci, C.; Montreuil, J.; Mignot, C., A cytometric study of the red blood cells in Gaucher disease reveals their abnormal shape that may be involved in increased erythrophagocytosis, Cytometry B Clin. Cytom., 80B, 28-37 (2011)
[3] Delaunaya, J., The hereditary stomatocytoses: genetic disorders of the red cell membrane permeability to monovalent cations, Semin. Hematol., 41, 165-172 (2004)
[4] Galkin, O.; Vekilov, P. G., Mechanisms of homogeneous nucleation of polymers of sickle cell anemia hemoglobin in deoxy state, J. Mol. Biol., 336, 43-59 (2004)
[5] Gallaghera, P. G., Hereditary elliptocytosis: spectrin and protein 4.1R, Semin. Hematol., 41, 142-164 (2004)
[6] Hansen, J. C.; Skalak, R.; Chien, S.; Hoger, A., An elastic network model based on the structure of the red blood cell membrane skeleton, Biophys. J., 70, 146-166 (1996)
[7] Boey, S. K.; Boal, D. H.; Discher, D. E., Simulations of the erythrocyte cytoskeleton at large deformation. I: Microscopic models, Biophys. J., 75, 1573-1583 (1998)
[8] Discher, D. E.; Boal, D. H.; Boey, S. K., Simulations of the erythrocyte cytoskeleton at large deformation. II: Micropipette aspiration, Biophys. J., 75, 1584-1597 (1998)
[9] Mukhopadhyay, R.; Lim, G. H.W.; Wortis, M., Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing, Biophys. J., 82, 1756-1772 (2002)
[10] Dao, M.; Lim, C. T.; Suresh, S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids, 51, 2259-2280 (2003)
[11] Mills, J. P.; Qie, L.; Dao, M.; Lim, C. T.; Suresh, S., Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech. Chem. Biol., 1, 169-180 (2004)
[12] Dao, M.; Li, J.; Suresh, S., Molecularly based analysis of deformation of spectrin network and human erythrocyte, Mater. Sci. Eng. C, 26, 1232-1244 (2006)
[13] Hartmann, D., A multiscale model for red blood cell mechanics, Biomech. Model. Mechanobiol., 9, 1-17 (2010)
[14] Pivkin, I. V.; Karniadakis, G. E., Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett., 101, 118105 (2008)
[15] Fedosov, D. A.; Caswell, B.; Karniadakis, G. E., A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J., 98, 2215-2225 (2010)
[16] Dupin, M. M.; Halliday, I.; Care, C. M.; Alboul, L.; Munn, L. L., Modeling the flow of dense suspensions of deformable particles in three dimensions, Phys. Rev. E, 75, 066707 (2007)
[17] Freund, J. B.; Orescanin, M. M., Cellular flow in a small blood vessel, J. Fluid Mech., 671, 466-490 (2011) · Zbl 1225.76315
[18] Noguchi, H.; Gompper, G., Shape transitions of fluid vesicles and red blood cells in capillary flows, Proc. Natl. Acad. Sci. USA, 102, 14159-14164 (2005)
[19] Wang, X. Y.; Guo, X., Quasi-continuum model for the finite deformation of single-layer graphene sheets based on the temperature-related higher order Cauchy-Born rule, J. Comput. Theor. Nanosci., 10, 154-164 (2013)
[20] Wang, X. Y.; Guo, X., Numerical simulation for finite deformation of single-walled carbon nanotubes at finite temperature using temperature-related higher order Cauchy-Born rule based quasi-continuum model, Comput. Mater. Sci., 55, 273-283 (2012)
[21] Guo, X.; Wang, J. B.; Zhang, H. W., Mechanical properties of single-walled carbon nanotubes based on higher order Cauchy-Born rule, Int. J. Solids Struct., 43, 1276-1290 (2006) · Zbl 1119.74534
[22] Liu, S.; Derick, L. H.; Palek, J., Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol., 104, 527-536 (1987)
[23] Li, J.; Dao, M.; Lim, C. T.; Suresh, S., Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J., 5, 3707-3719 (2005)
[24] Arroyo, M.; Belytschko, T., An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids, 50, 1941-1977 (2002) · Zbl 1006.74061
[25] Guo, X.; Liao, J. B.; Wang, X. Y., Investigation of the thermo-mechanical properties of single-walled carbon nanotubes based on the temperature-related higher order Cauchy-Born rule, Comput. Mater. Sci., 51, 445-454 (2012)
[26] Liew, K. M.; Xiang, P.; Sun, Y. Z., A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules, Compos. Struct., 93, 1809-1818 (2011)
[27] Xiang, P.; Liew, K. M., Predicting buckling behavior of microtubules based on an atomistic-continuum model, Int. J. Solids Struct., 48, 1730-1737 (2011) · Zbl 1236.74089
[28] Xiang, P.; Liew, K. M., Free vibration analysis of microtubules based on an atomistic-continuum model, J. Sound Vib., 331, 213-230 (2012)
[29] Marko, J.; Siggia, E. D., Stretching DNA, Macromolecules, 28, 8759-8770 (1995)
[30] Zhang, P.; Huang, Y.; Geubelle, P. H.; Klein, P. A.; Hwang, K. C., The elastic modulus of single-walled carbon nanotubes: a continuum analysis incorporating interatomic potentials, Int. J. Solids Struct., 39, 3893-3906 (2002) · Zbl 1049.74753
[31] Sunyk, R.; Steinmann, P., On higher gradients in continuum-atomistic modeling, Int. J. Solids Struct., 40, 6877-6896 (2003) · Zbl 1137.74311
[32] Dolbow, J.; Belytschko, T., An introduction to programming the meshless element free Galerkin method, Arch. Comput. Methods Eng., 5, 207-241 (1998)
[33] Evans, E. A.; Fung, Y. C., Improved measurements of the erythrocyte geometry, Microvasc. Res., 4, 335-347 (1972)
[34] Munkres, J. R., Analysis on Manifolds (1991), Westview Press: Westview Press Boulder, CO · Zbl 0743.26006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.