×

Cellular flow in a small blood vessel. (English) Zbl 1225.76315

Summary: In the smallest capillaries, or in tubes with diameter \(D \lesssim 8 \mu m\), flowing red blood cells are well known to organize into single-file trains, with each cell deformed into an approximately static bullet-like shape. Detailed high-fidelity simulations are used to investigate flow in a model blood vessel with diameter slightly larger than this: \(D = 11.3 \mu m\). In this case, the cells deviate from this single-file arrangement, deforming continuously and significantly. At the higher shear rates simulated (mean velocity divided by diameter \(U/D \gtrsim 50s^{-1})\), the effective tube viscosity is shear-rate insensitive with \(\mu_{eff}/\mu_{plasma} = 1.21\). This matches well with the value \(\mu_{eff}/\mu_{plasma} = 1.19\) predicted for the same \(30\%\) cell volume fraction by an established empirical fit of high-shear-rate in vitro experimental data. At lower shear rates, the effective viscosity increases, reaching \(\mu _{eff}/\mu_{plasma} \approx 1.65\) at the lowest shear rate simulated \((U/D \approx 3.7s^{-1})\). Because of the continuous deformations, the cell-interior viscosity is potentially important for vessels of this size. However, most results for simulations with cell interior viscosity five times that of the plasma \((\lambda =5)\), which is thought to be close to physiological conditions, closely match results for cases with \(\lambda = 1\). The cell-free layer that forms along the vessel walls thickens from \(0.3 \mu m\) for \(U/D = 3.7s^{-1}\) up to \(1.2 \mu m\) for \(U/D \gtrsim 100s^{-1}\), in reasonable agreement with reported experimental results. The thickness of this cell-free layer is the key factor governing the overall flow resistance, and this in turn is shown to follow a trend expected for lubrication lift forces for shear rates between \(U/D \approx 8s^{-1}\) and \(U/D \approx 100s^{ 1}\). Only in this same range are the cells near the vessel wall on average inclined relative to the wall, as might be expected for a lubrication mechanism. Metrics are developed to quantify the kinematics of this dense cellular flow in terms of the well-known tank-treading and tumbling behaviours often observed for isolated cells in shear flows. One notable effect of \(\lambda =5\) versus \(\lambda =1\) is that it suppresses treading rotation rates by a factor of about 2. The treading rate is found to scale with the velocity difference across the cell-rich core and is thus significantly slower than the overall shear rate in the flow, which is presumably why the flow is otherwise insensitive to \(\lambda\). The cells in all cases also have a similarly slow mean tumbling motion, which is insensitive to cell-interior viscosity and decreases monotonically with increasing \(U/D\).

MSC:

76Z05 Physiological flows
92C35 Physiological flow
92C37 Cell biology
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9780511624124 · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[2] DOI: 10.1073/pnas.0504243102 · doi:10.1073/pnas.0504243102
[3] DOI: 10.1038/219956a0 · doi:10.1038/219956a0
[4] DOI: 10.1016/j.msec.2005.08.020 · doi:10.1016/j.msec.2005.08.020
[5] Cokelet, Circ. Res. 68 pp 1– (1991) · doi:10.1161/01.RES.68.1.1
[6] DOI: 10.1016/0026-2862(89)90005-8 · doi:10.1016/0026-2862(89)90005-8
[7] DOI: 10.1126/science.157.3790.829 · doi:10.1126/science.157.3790.829
[8] DOI: 10.1103/PhysRevE.80.011901 · doi:10.1103/PhysRevE.80.011901
[9] Canuto, Spectral Methods in Fluid Dynamics (1987)
[10] DOI: 10.1073/pnas.0811484106 · doi:10.1073/pnas.0811484106
[11] DOI: 10.1002/macp.1975.021760912 · doi:10.1002/macp.1975.021760912
[12] Marton, Clin. Hemorheol. Microcirc. 24 pp 75– (2001)
[13] Alonso, Am. J. Physiol. Heart Circ. Physiol. 268 pp H25– (1995)
[14] Alberts, Molecular Biology of the Cell (2008)
[15] DOI: 10.1529/biophysj.104.047332 · doi:10.1529/biophysj.104.047332
[16] DOI: 10.1103/PhysRevLett.98.188302 · doi:10.1103/PhysRevLett.98.188302
[17] Kim, Biorheology 46 pp 181– (2009)
[18] DOI: 10.1152/ajpheart.01090.2006 · doi:10.1152/ajpheart.01090.2006
[19] DOI: 10.1146/annurev.fluid.34.082401.165302 · Zbl 0994.76501 · doi:10.1146/annurev.fluid.34.082401.165302
[20] DOI: 10.1115/1.3168356 · doi:10.1115/1.3168356
[21] DOI: 10.1016/j.jcp.2010.01.024 · Zbl 1186.92013 · doi:10.1016/j.jcp.2010.01.024
[22] DOI: 10.1146/annurev.ph.49.030187.001233 · doi:10.1146/annurev.ph.49.030187.001233
[23] Yamaguchi, Biorheology 29 pp 251– (1992)
[24] DOI: 10.1103/PhysRevLett.98.140602 · doi:10.1103/PhysRevLett.98.140602
[25] Whitmore, Rheology of the Circulation (1968)
[26] DOI: 10.1115/1.3138326 · doi:10.1115/1.3138326
[27] DOI: 10.1063/1.3026569 · Zbl 1182.76730 · doi:10.1063/1.3026569
[28] DOI: 10.1007/s10439-009-9720-3 · doi:10.1007/s10439-009-9720-3
[29] Soutani, Am. J. Physiol. Heart Circ. Physiol. 268 pp H1959– (1995)
[30] DOI: 10.1007/BF00396444 · doi:10.1007/BF00396444
[31] DOI: 10.1103/PhysRevLett.98.078301 · doi:10.1103/PhysRevLett.98.078301
[32] Gaehtgens, Blood Cells 6 pp 799– (1980)
[33] DOI: 10.1126/science.164.3880.717 · doi:10.1126/science.164.3880.717
[34] DOI: 10.1201/EBK1439820056-c3 · doi:10.1201/EBK1439820056-c3
[35] Sharan, Biorheology 38 pp 415– (2001)
[36] Secomb, Modeling and Simulation of Capsules and Biological Cells pp 163– (2003)
[37] DOI: 10.1063/1.2472479 · Zbl 1146.76385 · doi:10.1063/1.2472479
[38] DOI: 10.1016/j.cma.2010.02.001 · Zbl 1231.74311 · doi:10.1016/j.cma.2010.02.001
[39] DOI: 10.1016/0026-2862(87)90078-1 · doi:10.1016/0026-2862(87)90078-1
[40] DOI: 10.1016/j.bpj.2010.02.002 · doi:10.1016/j.bpj.2010.02.002
[41] DOI: 10.1063/1.1862262 · Zbl 1187.76458 · doi:10.1063/1.1862262
[42] Fåhræus, Am. J. Physiol. 96 pp 562– (1931)
[43] Reynolds, Proc. R. Soc. Lond. 177 pp 157– (1886)
[44] DOI: 10.1016/S0006-3495(76)85658-5 · doi:10.1016/S0006-3495(76)85658-5
[45] Reinke, Circ. Res. 59 pp 124– (1986) · doi:10.1161/01.RES.59.2.124
[46] DOI: 10.1016/S0006-3495(83)84319-7 · doi:10.1016/S0006-3495(83)84319-7
[47] Reinke, Heart Circ. Physiol. 253 pp H540– (1987)
[48] DOI: 10.1063/1.470117 · doi:10.1063/1.470117
[49] Pries, Circ. Res. 75 pp 904– (1994) · doi:10.1161/01.RES.75.5.904
[50] DOI: 10.1103/PhysRevE.75.066707 · doi:10.1103/PhysRevE.75.066707
[51] Pries, Clin. Hemorheol. Microcirc. 29 pp 143– (2003)
[52] DOI: 10.1103/PhysRevE.79.046318 · doi:10.1103/PhysRevE.79.046318
[53] Pries, Am. J. Physiol. Heart Circ. Physiol. 263 pp H1770– (1992)
[54] DOI: 10.1016/j.ijmultiphaseflow.2008.03.002 · doi:10.1016/j.ijmultiphaseflow.2008.03.002
[55] DOI: 10.1063/1.1830484 · Zbl 1187.76425 · doi:10.1063/1.1830484
[56] DOI: 10.1114/1.1617985 · doi:10.1114/1.1617985
[57] DOI: 10.1063/1.858498 · Zbl 0742.76009 · doi:10.1063/1.858498
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.