×

Quenching, aging, and reviving in coupled dynamical networks. (English) Zbl 07408899

Summary: Rhythmic behavior represents one of the most striking and ubiquitous manifestations of functional evolution for a wide class of natural and man-made systems. The emergence of diverse (ar)rhythmic dynamics can be well understood by models of coupled dynamical networks, where the interplay between the intrinsic dynamics of a single unit and the coupling functions plays a critical role in shaping a vast repertoire of collective behaviors. Under certain circumstances, all the individual dynamical systems may cease their oscillations totally when coupled, which results in the emergence of oscillation quenching in coupled oscillatory systems. Macroscopic oscillations of coupled dynamical networks can also be gradually weakened and even completely quenched via aging transition. Oscillation reviving, an inverse process of quenching and aging, refers to the restoration of rhythmic activity of coupled dynamical networks from the phenomena of quenching and aging. The study on quenching, aging, and reviving of rhythmic behaviors in coupled dynamical networks has developed into an active and rapidly evolving area of research with a wide variety of applications, where tremendous progresses with vital insights have been witnessed in the last decade. In this review, we endeavour to provide an exhaustive overview on the most important aspects of quenching, aging, and reviving in coupled dynamical networks ranging from theories to experiments and applications. The prevailing knowledge is integrated and pulled together to make the relevant results and methods more generally accessible for researchers in distinct communities of science and technology. Relevant open issues and challenges that deserve of special attentions are highlighted for future study. The present review should stimulate deeper investigations on the collapse and revival of macroscopic rhythmic behaviors, which will enlighten our understanding on evading irreversible failures of coupled dynamical networks and even guide us to identify the precursors of critical transitions. Our work will foster further studies on the physical principles of collective rhythms that robustly emerge in nature and real life.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Stankovski, T.; Pereira, T.; McClintock, P. V.E.; Stefanovska, A., Coupling functions: Universal insights into dynamical interaction mechanisms, Rev. Modern Phys., 89, Article 045001 pp. (2017)
[2] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[3] Braiman, Y.; Lindner, J. F.; Ditto, W. L., Taming spatiotemporal chaos with disorder, Nature, 378, 465-467 (1995)
[4] Nishikawa, T.; Motter, A. E., Symmetric states requiring system asymmetry, Phys. Rev. Lett., 117, Article 114101 pp. (2016)
[5] Molnar, F.; Nishikawa, T.; Motter, A. E., Network experiment demonstrates converse symmetry breaking, Nat. Phys., 16, 351-356 (2020)
[6] Hart, J. D.; Zhang, Y. Z.; Roy, R.; Motter, A. E., Topological control of synchronization patterns: Trading symmetry for stability, Phys. Rev. Lett., 122, Article 058301 pp. (2019)
[7] Babloyantz, A., Self-organization phenomena resulting from cell-cell contact, J. Theoret. Biol., 68, 551-561 (1977)
[8] Grossberg, S., Pattern formation by the global limits of a nonlinear competitive interaction in \(n\) dimensions, J. Math. Biol., 4, 237-256 (1977) · Zbl 0357.92005
[9] Gurney, K.; Prescott, T. J.; Redgrave, P., A computational model of action selection in the basal ganglia. I. A new functional anatomy, Biol. Cybern., 84, 401-410 (2001) · Zbl 1160.92310
[10] Mao, Z. H.; Massaquoi, S. G., Dynamics of winner-take-all competition in recurrent neural networks with lateral inhibition, IEEE Trans. Neural Netw., 18, 55-69 (2007)
[11] May, R. M., Stability and Complexity in Model Ecosystems (1974), Princeton University Press: Princeton University Press Princeton
[12] Prasad, A.; Lai, Y. C.; Gavrielides, A.; Kovanis, V., Amplitude modulation in a pair of time-delay coupled external-cavity semiconductor lasers, Phys. Lett. A, 318, 71-77 (2003)
[13] Kumar, P.; Prasad, A.; Ghosh, R., Stable phase-locking of an external-cavity diode laser subjected to external optical injection, J. Phys. B, 41, Article 135402 pp. (2008)
[14] Soriano, M. C.; García-Ojalvo, J.; Mirasso, C. R.; Fischer, I., Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers, Rev. Modern Phys., 85, 421-470 (2013)
[15] Miake, J.; Marban, E.; Nuss, H. B., Biological pacemaker created by gene transfer, Nature, 419, 132-133 (2002)
[16] Jalife, J.; Gray, R. A.; Morley, G. E.; Davidenko, J. M., Self-organization and the dynamical nature of ventricular fibrillation, Chaos, 8, 79-93 (1998) · Zbl 1069.92506
[17] Menck, P. J.; Heitzig, J.; Kurths, J.; Schellnhuber, H. J., How dead ends undermine power grid stability, Nature Commun., 5, 3969 (2014)
[18] Saxena, G.; Prasad, A.; Ramaswamy, R., Amplitude death: The emergence of stationarity in coupled nonlinear systems, Phys. Rep., 521, 205-228 (2012)
[19] Koseska, A.; Volkov, E.; Kurths, J., Oscillation quenching mechanisms: Amplitude vs. oscillation death, Phys. Rep., 531, 173-199 (2013) · Zbl 1356.34043
[20] Rayleigh, J., The Theory of Sound (1945), Dover: Dover New York · Zbl 0061.45904
[21] Abel, M.; Bergweiler, S.; Gerhard-Multhaupt, R., Synchronization of organ pipes: Experimental observations and modeling, J. Acoust. Soc. Am., 119, 2467-2475 (2006)
[22] Abel, M.; Ahnert, K.; Bergweiler, S., Synchronization of sound sources, Phys. Rev. Lett., 103, Article 114301 pp. (2009)
[23] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0993.37002
[24] Ozden, I.; Venkataramani, S.; Long, M. A.; Connors, B. W.; Nurmikko, A. V., Strong coupling of nonlinear electronic and biological oscillators: Reaching the amplitude death regime, Phys. Rev. Lett., 93, Article 158102 pp. (2004)
[25] Zhai, Y.; Kiss, I. Z.; Hudson, J. L., Amplitude death through a Hopf bifurcation in coupled electrochemical oscillators: Experiments and simulations, Phys. Rev. E, 69, Article 026208 pp. (2004)
[26] Tang, S.; Vicente, R.; Chiang, M. C.; Mirasso, C. R.; Liu, J. M., Nonlinear dynamics of semiconductor lasers with mutual optoelectronic coupling, IEEE J. Sel. Top. Quantum Electron., 10, 936-943 (2004)
[27] Biwa, T.; Tozuka, S.; Yazaki, T., Amplitude death in coupled thermoacoustic oscillators, Phys. Rev. Appl., 3, Article 034006 pp. (2015)
[28] Prigogine, I.; Lefever, R., Symmetry breaking instabilities in dissipative systems, J. Chem. Phys., 48, 1695-1700 (1968)
[29] Bar-Eli, K., On the stability of coupled chemical oscillators, Physica D, 14, 242-252 (1985)
[30] Bar-Eli, K., Coupling of chemical oscillators, J. Phys. Chem., 88, 3616-3622 (1984)
[31] Bar-Eli, K.; Reuveni, S., Stable stationary states of coupled chemical oscillators. Experimental evidence, J. Phys. Chem., 89, 1329-1330 (1985)
[32] Dolnik, M.; Marek, M., Extinction of oscillations in forced and coupled reaction cells, J. Phys. Chem., 92, 2452-2455 (1988)
[33] Crowley, M. F.; Epstein, I. R., Experimental and theoretical studies of a coupled chemical oscillator: Phase death, multistability and in-phase and out-of-phase entrainment, J. Phys. Chem., 93, 2496-2502 (1989)
[34] Aronson, D. G.; Ermentrout, G. B.; Kopell, N., Amplitude response of coupled oscillators, Physica D, 41, 403-449 (1990) · Zbl 0703.34047
[35] Ermentrout, G. B., Oscillator death in populations of “all to all” coupled nonlinear oscillators, Physica D, 41, 219-231 (1990) · Zbl 0693.34040
[36] Ermentrout, G. B.; Kopell, N., Oscillator death in systems of coupled neural oscillators, SIAM J. Appl. Math., 50, 125-146 (1990) · Zbl 0686.34033
[37] DeMonte, S.; D’Ovidio, F.; Mosekilde, E., Coherent regimes of globally coupled dynamical systems, Phys. Rev. Lett., 90, Article 054102 pp. (2003)
[38] Atay, F. M., Oscillator death in coupled functional differential equations near Hopf bifurcation, J. Differential Equations, 221, 190-209 (2006) · Zbl 1099.34066
[39] Bar-Eli, K., Oscillations death revisited; coupling of identical chemical oscillators, Phys. Chem. Chem. Phys., 13, 11606-11614 (2011)
[40] Yamaguchi, Y.; Shimizu, H., Theory of self-synchronization in the presence of native frequency distribution and external noises, Physica D, 11, 212-226 (1984) · Zbl 0582.92006
[41] Aronson, D. G.; Doedel, E. J.; Othmer, H. G., An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators, Physica D, 25, 20-104 (1987) · Zbl 0624.34029
[42] Shiino, M.; Frankowicz, M., Synchronization of infinitely many coupled limit-cycle type oscillators, Phys. Lett. A, 136, 103-108 (1989)
[43] Mirollo, R. E.; Strogatz, S. H., Amplitude death in an array of limit-cycle oscillators, J. Stat. Phys., 60, 245-262 (1990) · Zbl 1086.34525
[44] Matthews, P. C.; Mirollo, R. E.; Strogatz, S. H., Dynamics of a large system of coupled nonlinear oscillators, Physica D, 52, 293-331 (1991) · Zbl 0742.34035
[45] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Time delay induced death in coupled limit-cycle oscillators, Phys. Rev. Lett., 80, 5109-5112 (1998)
[46] Atay, F. M., Distributed delays facilitate amplitude death of coupled oscillators, Phys. Rev. Lett., 91, Article 094101 pp. (2003)
[47] Matthews, P. C.; Strogatz, S. H., Phase diagram for the collective behavior of limit-cycle oscillators, Phys. Rev. Lett., 65, l701 (1990) · Zbl 1050.82538
[48] Pisarchik, A. N., Oscillation death in coupled nonautonomous systems with parametrical modulation, Phys. Lett. A, 318, 65-70 (2003) · Zbl 1098.37504
[49] Konishi, K., Amplitude death in oscillators coupled by a one-way ring time-delay connection, Phys. Rev. E, 70, Article 066201 pp. (2004)
[50] Lee, D. S.; Ryu, J. W.; Park, Y. J.; Kye, W. H.; Kurdoglyan, M. S.; Kim, C. M., Stabilization of a chaotic laser and quenching, Appl. Phys. Lett., 86, Article 181104 pp. (2005)
[51] Konishi, K.; Kokame, H., Time-delay-induced amplitude death in chaotic map lattices and its avoiding control, Phys. Lett. A, 366, 585-590 (2007)
[52] Ghosh, D.; Grosu, I.; Dana, S. K., Design of coupling for synchronization in time-delayed systems, Chaos, 22, Article 033111 pp. (2012) · Zbl 1319.93026
[53] Frasca, M.; Bergner, A.; Kurths, J.; Fortuna, L., Bifurcations in a star-like network of stuart-landau oscillators, Int. J. Bifurcation Chaos, 22, Article 1250173 pp. (2012) · Zbl 1270.34069
[54] Acebrón, J. A.; Bonilla, L. L.; Pérez Vicente, C. J.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 137-185 (2005)
[55] Koseska, A.; Volkov, E.; Kurths, J., Transition from amplitude to oscillation death via Turing bifurcation, Phys. Rev. Lett., 111, Article 024103 pp. (2013)
[56] Kondor, D.; Vattay, G., Dynamics and structure in cell signaling networks: Offstate stability and dynamically positive cycles, PLoS One, 8, Article e57653 pp. (2013)
[57] Song, G.; Buck, N. V.; Agrawal, B. N., Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper, J. Guid. Control Dyn., 22, 433-440 (1999)
[58] Tang, E.; Bassett, D. S., Control of dynamics in brain networks, Rev. Modern Phys., 90, Article 031003 pp. (2018)
[59] Ullner, E.; Zaikin, A.; Volkov, E. I.; García-Ojalvo, J., Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication, Phys. Rev. Lett., 99, Article 148103 pp. (2007)
[60] Tyson, J.; Kauffman, S., Control of mitosis by a continuous biochemical oscillation: Synchronization; spatially inhomogeneous oscillations, J. Math. Biol., 1, 289-310 (1975) · Zbl 0299.92004
[61] Koseska, A.; Volkov, E.; Zaikin, A.; Kurths, J., Inherent multistability in arrays of autoinducer coupled genetic oscillators, Phys. Rev. E, 75, Article 031916 pp. (2007)
[62] Ullner, E.; Koseska, A.; Kurths, J.; Volkov, E.; Kantz, H.; García-Ojalvo, J., Multistability of synthetic genetic networks with repressive cell-to-cell communication, Phys. Rev. E, 78, Article 031904 pp. (2008)
[63] Koseska, A.; Volkov, E.; Kurths, J., Detuning-dependent dominance of oscillation death in globally coupled synthetic genetic oscillators, Europhys. Lett., 85, 28002 (2009)
[64] Koseska, A.; Volkov, E.; Kurths, J., Parameter mismatches and oscillation death in coupled oscillators, Chaos, 20, 023132 (2010) · Zbl 1311.34077
[65] Suzuki, N.; Furusawa, C.; Kaneko, K., Oscillatory protein expression dynamics endows stem cells with robust differentiation potential, PLoS One, 6, Article e27232 pp. (2011)
[66] Goto, Y.; Kaneko, K., Minimal model for stem-cell differentiation, Phys. Rev. E, 88, Article 032718 pp. (2013)
[67] Suárez-Vargas, J. J.; González, J. A.; Stefanovska, A.; McClintock, P. V.E., Diverse routes to oscillation death in a coupled-oscillator system, Europhys. Lett., 85, 38008 (2009)
[68] Curtu, R., Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network, Physica D, 239, 504-514 (2010) · Zbl 1196.37088
[69] Daido, H.; Nakanishi, K., Aging transition and universal scaling in oscillator networks, Phys. Rev. Lett., 93, Article 104101 pp. (2004)
[70] Albert, R.; Jeong, H.; Barabási, A. L., Error and attack tolerance of complex networks, Nature, 406, 378-382 (2000)
[71] Callaway, D. S.; Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85, 5468 (2000)
[72] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Resilience of the internet to random breakdowns, Phys. Rev. Lett., 85, 4626 (2000)
[73] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Breakdown of the internet under intentional attack, Phys. Rev. Lett., 86, 3682 (2001)
[74] Pazó, D.; Montbrió, E., Universal behavior in populations composed of excitable and self-oscillatory elements, Phys. Rev. E, 73 (2006), 055202(R)
[75] Kitano, H., Biological robustness, Nature Rev. Genet., 5, 826-837 (2004)
[76] Tanaka, G.; Okada, Y.; Aihara, K., Phase transitions in mixed populations composed of two types of self-oscillatory elements with different periods, Phys. Rev. E, 82 (2010), 035202(R)
[77] Daido, H.; Kasama, A.; Nishio, K., Onset of dynamic activity in globally coupled excitable and oscillatory units, Phys. Rev. E, 88, Article 052907 pp. (2013)
[78] Vicsek, T.; Zafeiris, A., Collective motion, Phys. Rep., 517, 71-140 (2012)
[79] Jenkins, A., Self-oscillation, Phys. Rep., 525, 167-222 (2013) · Zbl 1295.34050
[80] Zou, Y.; Donner, R. V.; Marwan, N.; Donges, J. F.; Kurths, J., Complex network approaches to nonlinear time series analysis, Phys. Rep., 787, 1-97 (2019)
[81] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[82] Nakagawa, N.; Kuramoto, Y., From collective oscillations to collective chaos in a globally coupled oscillator system, Physica D, 75, 74-80 (1994) · Zbl 0885.58050
[83] Lee, W. S.; Ott, E.; Antonsen, T. M., Phase and amplitude dynamics in large systems of coupled oscillators: Growth heterogeneity, nonlinear frequency shifts, and cluster states, Chaos, 23, Article 033116 pp. (2013) · Zbl 1323.34050
[84] Clusella, P.; Politi, A., Between phase and amplitude oscillators, Phys. Rev. E, 99, Article 062201 pp. (2019)
[85] Wang, C. Q.; Garnier, N. B., Continuous and discontinuous transitions to synchronization, Chaos, 26, Article 113119 pp. (2016) · Zbl 1378.34075
[86] Ermentrout, G. B.; Troy, W. C., The uniqueness and stability of the rest state for strongly coupled oscillators, SIAM J. Math. Anal., 20, 1436-1446 (1989) · Zbl 0701.35019
[87] Ryu, J. W.; Son, W. S.; Hwang, D. U., Oscillation death in coupled counter-rotating identical nonlinear oscillators, Phys. Rev. E, 100, Article 022209 pp. (2019)
[88] Prasad, A., Universal occurrence of mixed-synchronization in counter-rotating nonlinear coupled oscillators, Chaos Solitons Fractals, 43, 42-46 (2010) · Zbl 1232.37016
[89] Sathiyadevi, K.; Gowthaman, I.; Senthilkumar, D. V.; Chandrasekar, V. K., Aging transition in the absence of inactive oscillators, Chaos, 29, Article 123117 pp. (2019) · Zbl 1429.34058
[90] Astakhov, V.; Koblyanskii, S.; Shabunin, A.; Kapitaniak, T., Peculiarities of the transitions to synchronization in coupled systems with amplitude death, Chaos, 21, Article 023127 pp. (2011) · Zbl 1317.34048
[91] Neufeld, Z.; Kiss, I. Z.; Zhou, C. S.; Kurths, J., Synchronization and oscillator death in oscillatory media with stirring, Phys. Rev. Lett., 91, Article 084101 pp. (2003)
[92] Assisi, C. G.; Jirsa, V. K.; Kelso, J. A.S., Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion, Phys. Rev. Lett., 94, Article 018106 pp. (2005)
[93] Yao, C. G.; Zhao, Q.; Liu, W. Q.; Yu, J., Collective dynamics induced by diversity taken from two-point distribution in globally coupled chaotic oscillators, Nonlinear Dynam., 75, 17 (2014) · Zbl 1281.34053
[94] Zou, W.; Zhan, M.; Kurths, J., Amplitude death in globally coupled oscillators with time-scale diversity, Phys. Rev. E, 98, Article 062209 pp. (2018)
[95] Aranson, I. S.; Kramer, L., The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74, 99-143 (2002) · Zbl 1205.35299
[96] Rubchinsky, L.; Sushchik, M., Disorder can eliminate oscillator death, Phys. Rev. E, 62, 6440 (2000)
[97] Osipov, G. V.; Sushchik, M. M., Synchronized clusters and multistability in arrays of oscillators with different natural frequencies, Phys. Rev. E, 58, 7198 (1998)
[98] Rubchinsky, L. L.; Sushchik, M. M.; Osipov, G. V., Patterns in networks of oscillators formed via synchronization and oscillator death, Math. Comput. Simulation, 58, 443-467 (2002) · Zbl 1102.34317
[99] Wu, Y.; Liu, W. Q.; Xiao, J. H.; Zou, W.; Kurths, J., Effects of spatial frequency distributions on amplitude death in an array of coupled Landau-Stuart oscillators, Phys. Rev. E, 85, Article 056211 pp. (2012)
[100] Ma, H.; Liu, W. Q.; Wu, Y.; Zhan, M.; Xiao, J. H., Ragged oscillation death in coupled nonidentical oscillators, Commun. Nonlinear Sci. Numer. Simul., 19, 2874-2882 (2014) · Zbl 1510.34072
[101] Deng, T.; Liu, W. Q.; Zhu, Y.; Xiao, J. H.; Kurths, J., Reviving oscillation with optimal spatial period of frequency distribution in coupled oscillators, Chaos, 26, Article 094813 pp. (2016)
[102] Stefański, A.; Perlikowski, P.; Kapitaniak, T., Ragged synchronizability of coupled oscillators, Phys. Rev. E, 75, Article 016210 pp. (2007)
[103] Yang, J., Transitions to amplitude death in a regular array of nonlinear oscillators, Phys. Rev. E, 76, Article 016204 pp. (2007)
[104] Chen, H. L.; Yang, J. Z., Transition to amplitude death in coupled system with small number of nonlinear oscillators, Commun. Theor. Phys., 51, 460-464 (2009)
[105] Wang, J. H.; Li, X. W., Reactive coupling effects on amplitude death of coupled limit-cycle systems, Chin. Phys. Lett., 26, Article 030505 pp. (2009)
[106] Ryu, J. W.; Kim, J. H.; Son, W. S.; Hwang, D. U., Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling, Chaos, 27, Article 083119 pp. (2017) · Zbl 1390.34149
[107] Hou, Z. H.; Xin, H. W., Oscillator death on small-world networks, Phys. Rev. E, 68 (2003), 055103(R)
[108] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139
[109] Prasad, A.; Dhamala, M.; Adhikari, B. M.; Ramaswamy, R., Amplitude death in nonlinear oscillators with nonlinear coupling, Phys. Rev. E, 81, Article 027201 pp. (2010)
[110] Liu, W. Q.; Wang, X. G.; Guan, S. G.; Lai, C. H., Transition to amplitude death in scale-free networks, New J. Phys., 11, Article 093016 pp. (2009)
[111] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[112] Nakao, H.; Mikhailov, A. S., Diffusion-induced instability and chaos in random oscillator networks, Phys. Rev. E, 79, Article 036214 pp. (2009)
[113] Hanski, I., Metapopulation dynamics, Nature, 396, 41-49 (1998)
[114] Balcan, D.; Vespignani, A., Invasion threshold in structured populations with recurrent mobility patterns, J. Theoret. Biol., 293, 87-100 (2012) · Zbl 1307.92335
[115] Gautreau, A.; Barrat, A.; Barthélemy, M., Global disease spread: Statistics and estimation of arrival times, J. Theoret. Biol., 251, 509-522 (2008) · Zbl 1398.92238
[116] Baronchelli, A.; Catanzaro, M.; Pastor-Satorras, R., Bosonic reaction-diffusion processes on scale-free networks, Phys. Rev. E., 78, Article 016111 pp. (2008)
[117] Meloni, S.; Perra, N.; Arenas, A.; Gomez, S.; Moreno, Y.; Vespignani, A., Modeling human mobility responses to the large-scale spreading of infectious diseases, Sci. Rep., 1, 62 (2011)
[118] Kondo, S.; Miura, T., Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329, 1616-1620 (2010) · Zbl 1226.35077
[119] Nakamasu, A.; Takahashi, G.; Kanbe, A.; Kondo, S., Interactions between zebrafish pigment cells responsible for the generation of Turing patterns, Proc. Natl. Acad. Sci. USA, 106, 8429-8434 (2009)
[120] Nakao, H.; Mikhailov, A. S., Turing patterns in network-organized activator-inhibitor systems, Nat. Phys., 6, 544-550 (2010)
[121] Barthélemy, M., Spatial networks, Phys. Rep., 499, 1-101 (2011)
[122] Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 32-39 (2012)
[123] Colizza, V.; Pastor-Satorras, R.; Vespignani, A., Reaction-diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 276-282 (2007)
[124] Gómez-Gardeñes, J.; Nicosia, V.; Sinatra, R.; Latora, V., Motion-induced synchronization in metapopulations of mobile agents, Phys. Rev. E, 87, Article 032814 pp. (2013)
[125] Fujiwara, N.; Kurths, J.; Díaz-Guilera, A., Synchronization in networks of mobile oscillators, Phys. Rev. E, 83 (2011), 025101(R)
[126] Frasca, M.; Buscarino, A.; Rizzo, A.; Fortuna, L.; Boccaletti, S., Synchronization of moving chaotic agents, Phys. Rev. Lett., 100, Article 044102 pp. (2008)
[127] Frasca, M.; Buscarino, A.; Rizzo, A.; Fortuna, L., Spatial pinning control, Phys. Rev. Lett., 108, Article 204102 pp. (2012)
[128] Prignano, L.; Sagarra, O.; Díaz-Guilera, A., Tuning synchronization of integrate-and-fire oscillators through mobility, Phys. Rev. Lett., 110, Article 114101 pp. (2013)
[129] Shen, C. S.; Chen, H. S.; Hou, Z. H., Mobility and density induced amplitude death in metapopulation networks of coupled oscillators, Chaos, 24, Article 043125 pp. (2014) · Zbl 1361.34056
[130] Majhi, S.; Ghosh, D., Amplitude death and resurgence of oscillation in networks of mobile oscillators, Europhys. Lett., 118, 40002 (2017)
[131] Bilal, S.; Ramaswamy, R., Synchronization and amplitude death in hypernetworks, Phys. Rev. E, 89, Article 062923 pp. (2014)
[132] Sorrentino, F., Synchronization of hypernetworks of coupled dynamical systems, New J. Phys., 14, Article 033035 pp. (2012) · Zbl 1448.34109
[133] Mulas, R.; Kuehn, C.; Jost, J., Coupled dynamics on hypergraphs: Master stability of steady states and synchronization, Phys. Rev. E, 101, Article 062313 pp. (2020)
[134] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 2109 (1998)
[135] Karnatak, R.; Ramaswamy, R.; Prasad, A., Amplitude death in the absence of time delays in identical coupled oscillators, Phys. Rev. E, 76 (2007), 035201(R)
[136] Karnatak, R.; Ramaswamy, R.; Prasad, A., Synchronization regimes in conjugate coupled chaotic oscillators, Chaos, 19, Article 033143 pp. (2009) · Zbl 1317.34119
[137] Strogatz, S. H., Death by delay, Nature, 394, 316-317 (1998)
[138] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Time delay dffects on coupled limit cycle oscillators at Hopf bifurcation, Physica D, 129, 15-34 (1999) · Zbl 0981.34022
[139] Song, Y. L.; Wei, J. J.; Yuan, Y., Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators, J. Nonlinear Sci., 17, 145-166 (2007) · Zbl 1126.34047
[140] Dodla, R.; Sen, A.; Johnston, G. L., Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators, Phys. Rev. E, 69, Article 056217 pp. (2004)
[141] Mehta, M. P.; Sen, A., Death island boundaries for delay-coupled oscillator chains, Phys. Lett. A, 355, 202-206 (2006)
[142] Guo, Y. X.; Niu, B., Amplitude death and spatiotemporal bifurcations in nonlocally delay-coupled oscillators, Nonlinearity, 28, 1841 (2015) · Zbl 1326.34111
[143] Zou, W.; Lu, J. Q.; Tang, Y.; Zhang, C. J.; Kurths, J., Control of delay-induced oscillation death by coupling phase in coupled oscillators, Phys. Rev. E, 84, Article 066208 pp. (2011)
[144] Zou, W.; Tang, Y.; Li, L. X.; Kurths, J., Oscillation death in asymmetrically delay-coupled oscillators, Phys. Rev. E, 85, Article 046206 pp. (2012)
[145] Zou, W.; Senthilkumar, D. V.; Tang, Y.; Lu, J. Q.; Kurths, J., Amplitude death in nonlinear oscillators with mixed time-delayed coupling, Phys. Rev. E, 88, Article 032916 pp. (2013)
[146] Konishi, K.; Le, L. B.; Hara, N., Stabilization of a steady state in oscillators coupled by a digital delayed connection, Eur. Phys. J. B, 85, 166 (2012)
[147] Xiao, R.; Sun, Z.; Yang, X.; Xu, W., Amplitude death islands in globally delay-coupled fractional-order oscillators, Nonlinear Dynam., 95, 2093-2102 (2019) · Zbl 1432.34048
[148] Prasad, A., Amplitude death in coupled chaotic oscillators, Phys. Rev. E, 72, Article 056204 pp. (2005)
[149] Konishi, K.; Senda, K.; Kokame, H., Amplitude death in time-delay nonlinear oscillators coupled by diffusive connections, Phys. Rev. E, 78, Article 056216 pp. (2008)
[150] Song, Y. L.; Xu, J.; Zhan, T. H., Bifurcation amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling, Chaos, 21, Article 023111 pp. (2011) · Zbl 1317.34067
[151] Saxena, G.; Prasad, A.; Ramaswamy, R., Amplitude death phenomena in delay-coupled Hamiltonian systems, Phys. Rev. E, 87, Article 052912 pp. (2013)
[152] Teki, H.; Konishi, K.; Hara, N., Amplitude death in a pair of one-dimensional complex Ginzburg-Landau systems coupled by diffusive connections, Phys. Rev. E, 95, Article 062220 pp. (2017)
[153] Konishi, K., Time-delay-induced stabilization of coupled discrete-time systems, Phys. Rev. E, 67, Article 017201 pp. (2003)
[154] Atay, F. M.; Karabacak, O., Stability of coupled map networks with delays, SIAM J. Appl. Dyn. Syst., 5, 508-527 (2006) · Zbl 1210.39013
[155] Watanabe, T.; Sugitani, Y.; Konishi, K.; Hara, N., Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure, Physica D, 338, 26-33 (2017) · Zbl 1376.93065
[156] Masoller, C.; Martí, A. C., Random delays and the synchronization of chaotic maps, Phys. Rev. Lett., 94, Article 134102 pp. (2005)
[157] Martí, A. C.; Ponce, M.; Masoller, C., Steady-state stabilization due to random delays in maps with self-feedback loops and in globally delayed-coupled maps, Phys. Rev. E, 72, Article 066217 pp. (2005)
[158] Gong, X. F.; Guan, S. G.; Wang, X. G.; Lai, C.-H., Stability of the steady state of delay-coupled chaotic maps on complex networks, Phys. Rev. E, 77, Article 056212 pp. (2008)
[159] Sugitani, Y.; Konishi, K.; Le, L. B.; Hara, N., Design of time-delayed connection parameters for inducing amplitude death in high-dimensional oscillator networks, Chaos, 24, Article 043105 pp. (2014) · Zbl 1361.34058
[160] Le, L. B.; Konishi, K.; Hara, N., Topology-free design for amplitude death in time-delayed oscillators coupled by a delayed connection, Phys. Rev. E, 87, Article 042908 pp. (2013)
[161] Zou, W.; Zheng, X.; Zhan, M., Insensitive dependence of delay-induced oscillation death on complex networks, Chaos, 21, Article 023130 pp. (2011) · Zbl 1317.34071
[162] Michiels, W.; Nijmeijer, H., Synchronization of delay-coupled nonlinear oscillators: An approach based on the stability analysis of synchronized equilibria, Chaos, 19, Article 033110 pp. (2009) · Zbl 1317.34121
[163] Höfener, J. M.; Sethia, G. C.; Gross, T., Stability of networks of delay-coupled delay oscillators, Europhys. Lett., 95, 40002 (2011)
[164] Höfener, J. M.; Sethia, G. C.; Gross, T., Amplitude death in networks of delay-coupled delay oscillators, Phil. Trans. R. Soc. A, 371, Article 20120462 pp. (2013) · Zbl 1353.94090
[165] Huddy, S. R.; Sun, J., Master stability islands for amplitude death in networks of delay-coupled oscillators, Phys. Rev. E, 93, Article 052209 pp. (2016)
[166] Huddy, S. R., Using critical curves to compute master stability islands for amplitude death in networks of delay-coupled oscillators, Chaos, 30, Article 013118 pp. (2020) · Zbl 1431.34047
[167] Otto, A.; Radons, G.; Bachrathy, D.; Orosz, G., Synchronization in networks with heterogeneous coupling delays, Phys. Rev. E, 97, Article 012311 pp. (2018)
[168] Kyrychko, Y. N.; Blyuss, K. B.; Schöll, E., Amplitude death in systems of coupled oscillators with distributed-delay coupling, Eur. Phys. J. B, 84, 307-315 (2011)
[169] Kyrychko, Y. N.; Blyuss, K. B.; Schöll, E., Amplitude and phase dynamics in oscillators with distributed-delay coupling, Phil. Trans. R. Soc. A, 371, Article 20120466 pp. (2013) · Zbl 1353.34045
[170] Saxena, G.; Prasad, A.; Ramaswamy, R., Dynamical effects of integrative time-delay coupling, Phys. Rev. E, 82, Article 017201 pp. (2010)
[171] Zou, W.; Zhan, M., Partial time-delay coupling enlarges death island of coupled oscillators, Phys. Rev. E, 80 (2009), 065204(R)
[172] Konishi, K.; Kokame, H.; Hara, N., Stabilization of a steady state in network oscillators by using diffusive connections with two long time delays, Phys. Rev. E, 81, Article 016201 pp. (2010)
[173] Nguimdo, R. M., Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays, Phys. Rev. E, 97, Article 032211 pp. (2018)
[174] Zou, W.; Senthilkumar, D. V.; Tang, Y.; Kurths, J., Stabilizing oscillation death by multicomponent coupling with mismatched delays, Phys. Rev. E, 86, Article 036210 pp. (2012)
[175] Sugitani, Y.; Konishi, K., Design of coupling parameters for inducing amplitude death in Cartesian product networks of delayed coupled oscillators, Phys. Rev. E, 96, Article 042216 pp. (2017)
[176] Konishi, K.; Kokame, H.; Hara, N., Stability analysis and design of amplitude death induced by a time-varying delay connection, Phys. Lett. A, 374, 733-738 (2010) · Zbl 1235.34154
[177] Sugitani, Y.; Konishi, K.; Hara, N., Delay- and topology-independent design for inducing amplitude death on networks with time-varying delay connection, Phys. Rev. E, 92, Article 042928 pp. (2015)
[178] Gjurchinovski, A.; Zakharova, A.; Schöll, E., Amplitude death in oscillator networks with variable-delay coupling, Phys. Rev. E, 89, Article 032915 pp. (2014)
[179] Konishi, K., Amplitude death induced by dynamic coupling, Phys. Rev. E, 68, Article 067202 pp. (2003)
[180] Konishi, K., Amplitude death induced by a global dynamic coupling, Int. J. Bifurcation Chaos, 17, 2781-2789 (2007) · Zbl 1184.34044
[181] Tamaševičius, A.; Bumeliene, S.; Adomaitiene, E., Stabilization of steady states in an array of all-to-all coupled oscillators, Phys. Rev. E, 99, Article 042217 pp. (2019)
[182] Konishi, K.; Hara, N., Topology-free stability of a steady state in network systems with dynamic connections, Phys. Rev. E, 83, Article 036204 pp. (2011)
[183] Resmi, V.; Ambika, G.; Amritkar, R. E., General mechanism for amplitude death in coupled systems, Phys. Rev. E, 84, Article 046212 pp. (2011)
[184] Sharma, A.; Sharma, P. R.; Shrimali, M. D., Amplitude death in nonlinear oscillators with indirect coupling, Phys. Lett. A, 376, 1562-1566 (2012) · Zbl 1260.34069
[185] Chaurasia, S. S.; Yadav, M.; Sinha, S., Environment-induced symmetry breaking of the oscillation-death state, Phys. Rev. E, 98, Article 032223 pp. (2018)
[186] Resmi, V.; Ambika, G.; Amritkar, R. E.; Rangarajan, G., Amplitude death in complex networks induced by environment, Phys. Rev. E, 85, Article 046211 pp. (2012)
[187] Biswas, D.; Hui, N.; Banerjee, T., Amplitude death in intrinsic time-delayed chaotic oscillators with direct-indirect coupling: The existence of death islands, Nonlinear Dynam., 88, 2783-2795 (2017)
[188] Kamal, N. K.; Sharma, P. R.; Shrimali, M. D., Oscillation suppression in indirectly coupled limit cycle oscillators, Phys. Rev. E, 92, Article 022928 pp. (2015)
[189] Schwab, D. J.; Baetica, A.; Mehta, P., Dynamical quorum-sensing in oscillators coupled through an external medium, Physica D, 241, 1782-1788 (2012) · Zbl 1401.92014
[190] Sharma, A.; Verma, U. K.; Shrimali, M. D., Phase-flip and oscillation-quenching-state transitions through environmental diffusive coupling, Phys. Rev. E, 94, Article 062218 pp. (2016)
[191] Verma, U. K.; Kamal, N. K.; Shrimali, M. D., Co-existence of in-phase oscillations and oscillation death in environmentally coupled limit cycle oscillators, Chaos Solitons Fractals, 110, 55-63 (2018)
[192] Kim, M. Y.; Roy, R.; Aron, J. L.; Carr, T. W.; Schwartz, I. B., Scaling behavior of laser population dynamics with time-delayed coupling: Theory and experiment, Phys. Rev. Lett., 94, Article 088101 pp. (2005)
[193] Karnatak, R.; Ramaswamy, R.; Feudel, U., Conjugate coupling in ecosystems: Cross-predation stabilizes food webs, Chaos Solitons Fractals, 68, 48-57 (2014) · Zbl 1354.37093
[194] Dasgupta, M.; Rivera, M.; Parmananda, P., Suppression and generation of rhythms in conjugately coupled nonlinear systems, Chaos, 20, Article 023126 pp. (2010)
[195] Singla, T.; Pawar, N.; Parmananda, P., Exploring the dynamics of conjugate coupled Chua circuits: Simulations and experiments, Phys. Rev. E, 83, Article 026210 pp. (2011)
[196] Ray, A.; Saha, D. C.; Saha, P.; Chowdhury, A. R., Generation of amplitude death and rhythmogenesis in coupled hidden attractor system with experimental demonstration, Nonlinear Dynam., 87, 1393-1404 (2017)
[197] Zhang, X.; Wu, Y.; Peng, J. H., Analytical conditions for amplitude death induced by conjugate variable couplings, Int. J. Bifurcation Chaos, 21, 225-235 (2011) · Zbl 1208.34045
[198] Sharma, A.; Shrimali, M. D.; Prasad, A.; Ramaswamy, R.; Feudel, U., Phase-flip transition in relay-coupled nonlinear oscillators, Phys. Rev. E, 84, Article 016226 pp. (2011)
[199] Sharma, A.; Shrimali, M. D.; Aihara, K., Effect of mixed coupling on relay-coupled Rössler and Lorenz oscillators, Phys. Rev. E, 90, Article 062907 pp. (2014)
[200] Sharma, A., Time delay induced partial death patterns with conjugate coupling in relay oscillators, Phys. Lett. A, 383, 1865-1870 (2019) · Zbl 1486.34142
[201] Sharma, A.; Shrimali, M. D.; Prasad, A.; Ramaswamy, R., Time-delayed conjugate coupling in dynamical systems, Eur. Phys. J. Spec. Top., 226, 1903-1910 (2017)
[202] Takens, F., (Detecting Strange Attractors in Turbulence. Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics (1981), Springer: Springer New York), 366-381 · Zbl 0513.58032
[203] Sharma, A.; Shrimali, M. D., Amplitude death with mean-field diffusion, Phys. Rev. E, 85, Article 057204 pp. (2012)
[204] García-Ojalvo, J.; Elowitz, M. B.; Strogatz, S. H., Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing, Proc. Natl. Acad. Sci. USA, 101, 10955-10960 (2004) · Zbl 1064.92019
[205] Banerjee, T.; Dutta, P. S.; Gupta, A., Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model, Phys. Rev. E, 91, Article 052919 pp. (2015)
[206] Kamal, N. K.; Sharma, P. R.; Shrimali, M. D., Suppression of oscillations in mean-field diffusion, Pramana, 84, 237-247 (2015)
[207] Banerjee, T.; Biswas, D., Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion, Chaos, 23, Article 043101 pp. (2013) · Zbl 1331.34072
[208] Chakraborty, S.; Dandapathak, M.; Sarkar, B. C., Oscillation quenching in third order phase locked loop coupled by mean field diffusive coupling, Chaos, 26, Article 113106 pp. (2016)
[209] Sharma, A.; Suresh, K.; Thamilmaran, K.; Prasad, A.; Shrimali, M. D., Effect of parameter mismatch and time delay interaction on density-induced amplitude death in coupled nonlinear oscillators, Nonlinear Dynam., 76, 1797-1806 (2014)
[210] Rakshit, S.; Bera, B. K.; Majhi, S.; Hens, C.; Ghosh, D., Basin stability measure of different steady states in coupled oscillators, Sci. Rep., 7, 45909 (2017)
[211] Ariaratnam, J. T.; Strogatz, S. H., Phase diagram for the Winfree model of coupled nonlinear oscillators, Phys. Rev. Lett., 86, 4278-4281 (2001)
[212] Giannuzzi, F.; Marinazzo, D.; Nardulli, G.; Pellicoro, M.; Stramaglia, S., Phase diagram of a generalized Winfree model, Phys. Rev. E, 75, Article 051104 pp. (2007)
[213] Atay, F. M., Total and partial amplitude death in networks of diffusively coupled oscillators, Physica D, 183, 1-18 (2003) · Zbl 1057.70535
[214] Osipov, G. V.; Pikovsky, A. S.; Rosenblum, M. G.; Kurths, J., Phase synchronization effects in a lattice of nonidentical Rössler oscillators, Phys. Rev. E, 55, 2353 (1997)
[215] Volkov, E. I.; Volkov, D. V., Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators and noise-induced abnormal interspike variability, Phys. Rev. E, 65, Article 046232 pp. (2002)
[216] Tsaneva-Atanasova, K.; Zimliki, C. L.; Bertram, R.; Sherman, A., Diffusion of calcium and metabolites in pancreatic islets: Killing oscillations with a pitchfork, Biophys. J., 90, 3434-3446 (2006)
[217] Bressloff, P. C.; Coombes, S., Dynamics of strongly coupled spiking neurons, Neural Comput., 12, 91-129 (2000)
[218] Bressloff, P. C.; Coombes, S., A dynamical theory of spike train transitions in networks of integrate-and-fire oscillators, SIAM J. Appl. Math., 60, 820-841 (2000) · Zbl 0947.34022
[219] Poel, W.; Zakharova, A.; Schöll, E., Partial synchronization and partial amplitude death in mesoscale network motifs, Phys. Rev. E, 91, Article 022915 pp. (2015)
[220] Liu, W. Q.; Xiao, J. H.; Yang, J. Z., Partial amplitude death in coupled chaotic oscillators, Phys. Rev. E, 72, Article 057201 pp. (2005)
[221] Liu, W. Q.; Yang, J. Z.; Xiao, J. H., Experimental observation of partial amplitude death in coupled chaotic oscillators, Chin. Phys., 15, 2260-2265 (2006)
[222] Uwate, Y.; Nishio, Y., Amplitude death in strongly coupled polygonal oscillatory networks with sharing branch, IEEE Trans. Netw. Sci. Eng., 6, 188-197 (2019)
[223] Sahay, A.; Roy, A.; Pawar, S. A.; Sujith, R. I., Dynamics of coupled thermoacoustic oscillators under asymmetric forcing, Phys. Rev. Appl., 15, Article 044011 pp. (2021)
[224] Dudkowski, D.; Czołczyński, K.; Kapitaniak, T., Traveling amplitude death in coupled pendula, Chaos, 29, Article 083124 pp. (2019) · Zbl 1420.34073
[225] Banerjee, T.; Ghosh, D., Transition from amplitude to oscillation death under mean-field diffusive coupling, Phys. Rev. E, 89, Article 052912 pp. (2014)
[226] Ponrasu, K.; Sathiyadevi, K.; Chandrasekar, V. K.; Lakshmanan, M., Conjugate coupling-induced symmetry breaking and quenched oscillations, Europhys. Lett., 124, 20007 (2018)
[227] Ghosh, D.; Banerjee, T., Transitions among the diverse oscillation quenching states induced by the interplay of direct and indirect coupling, Phys. Rev. E, 90, Article 062908 pp. (2014)
[228] Ryu, J. W.; Lee, D. S.; Park, Y. J.; Kim, C. M., Oscillation quenching in coupled different oscillators, J. Korean Phys. Soc., 55, 395-399 (2009)
[229] Illing, L., Amplitude death of identical oscillators in networks with direct coupling, Phys. Rev. E, 94, Article 022215 pp. (2016)
[230] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. London Ser. B, 221, 87-102 (1984)
[231] Kopell, N.; Ermentrout, G. B., Symmetry and phaselocking in chains of weakly coupled oscillators, Comm. Pure Appl. Math., 39, 623-660 (1986) · Zbl 0596.92011
[232] Kopell, N.; Ermentrout, G. B., Coupled oscillators and the design of central pattern generators, Math. Biosci., 90, 87-109 (1988) · Zbl 0649.92009
[233] Mirollo, R. E.; Strogatz, S. H., Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50, 1645-1662 (1990) · Zbl 0712.92006
[234] Prasad, A.; Dhamala, M.; Adhikari, B. M.; Ramaswamy, R., Targeted control of amplitude dynamics in coupled nonlinear oscillators, Phys. Rev. E, 82, Article 027201 pp. (2010)
[235] Cudmore, P.; Holmes, C. A., Phase and amplitude dynamics of nonlinearly coupled oscillators, Chaos, 25, Article 023110 pp. (2015) · Zbl 1345.34054
[236] Xu, D. L.; Zhang, H. C.; Lu, C.; Qi, E. R.; Tian, C.; Wu, Y. S., Analytical criterion for amplitude death in nonautonomous systems with piecewise nonlinear coupling, Phys. Rev. E, 89, Article 042906 pp. (2014)
[237] Sekikawa, M.; Shimizu, K.; Inaba, N.; Kita, H.; Endo, T.; Fujimoto, K. I.; Yoshinaga, T.; Aihara, K., Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation, Phys. Rev. E, 84, Article 056209 pp. (2011)
[238] Ishibashi, K.; Kanamoto, R., Oscillaton collapse in coupled quantum van der Pol oscillators, Phys. Rev. E, 96, Article 052210 pp. (2017)
[239] Amitai, E.; Koppenhöfer, M.; Lörch, N.; Bruder, C., Quantum effects in amplitude death of coupled anharmonic self-oscillators, Phys. Rev. E, 97, Article 052203 pp. (2018)
[240] Bandyopadhyay, B.; Khatun, T.; Biswas, D.; Banerjee, T., Quantum manifestations of homogeneous and inhomogeneous oscillation suppression states, Phys. Rev. E, 102, Article 062205 pp. (2020)
[241] Ponzi, A.; Wickens, J. R., Optimal balance of the striatal medium spiny neuron network, PLoS Comput. Biol., 9, Article e1002954 pp. (2013)
[242] Angulo-Garcia, D.; Berke, J. D.; Torcini, A., Cell assembly dynamics of sparsely-connected inhibitory networks: A simple model for the collective activity of striatal projection neurons, PLoS Comput. Biol., 12, Article e1004778 pp. (2016)
[243] Angulo-Garcia, D.; Luccioli, S.; Olmi, S.; Torcini, A., Death and rebirth of neural activity in sparse inhibitory networks, New J. Phys., 19, Article 053011 pp. (2017) · Zbl 1514.92003
[244] Liu, W. Q.; Volkov, E.; Xiao, J. H.; Zou, W.; Zhan, M.; Yang, J. Z., Inhomogeneous stationary and oscillatory regimes in coupled chaotic oscillators, Chaos, 22, Article 033144 pp. (2012) · Zbl 1319.34058
[245] Stefanski, A.; Kapitaniak, T., Steady state locking in coupled chaotic systems, Phys. Lett. A, 210, 279-282 (1996) · Zbl 1073.37516
[246] Zhu, Y.; Qian, X.; Yang, J., A study of phase death states in a coupled system with stable equilibria, Europhys. Lett., 82, 40001 (2008)
[247] Ghosh, D.; Banerjee, T., Mixed-mode oscillation suppression states in coupled oscillators, Phys. Rev. E, 92, Article 052913 pp. (2015)
[248] Zou, W.; Wang, X. G.; Zhao, Q.; Zhan, M., Oscillation death in coupled oscillators, Front. Phys. China, 4, 97-110 (2009)
[249] Chen, Y. H.; Xiao, J. H.; Liu, W. Q.; Li, L. X.; Yang, J. Z., Dynamics of chaotic systems with attractive and repulsive couplings, Phys. Rev. E, 80, Article 046206 pp. (2009)
[250] Hens, C. R.; Olusola, O. I.; Pal, P.; Dana, S. K., Oscillation death in diffusively coupled oscillators by local repulsive link, Phys. Rev. E, 88, Article 034902 pp. (2013)
[251] Liu, W. Q.; Xiao, G. B.; Zhu, Y.; Zhan, M.; Xiao, J. H.; Kurths, J., Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators, Phys. Rev. E, 91, Article 052902 pp. (2015)
[252] Dixit, S.; Asir, P.; Shrimali, M. D., Aging in global networks with competing attractive-repulsive interaction, Chaos, 30, Article 123112 pp. (2020) · Zbl 1451.34036
[253] Turing, A. M., The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237, 37-72 (1952) · Zbl 1403.92034
[254] Zou, W.; Senthilkumar, D. V.; Koseska, A.; Kurths, J., Generalizing the transition from amplitude to oscillation death in coupled oscillators, Phys. Rev. E, 88 (2013), 050901(R)
[255] Zakharova, A.; Schneider, I.; Kyrychko, Y. N.; Blyuss, K. B.; Koseska, A.; Fiedler, B.; Schöll, E., Time delay control of symmetry-breaking primary and secondary oscillation death, Europhys. Lett., 104, 50004 (2013)
[256] Zou, W.; Senthilkumar, D. V.; Duan, J. Q.; Kurths, J., Emergence of amplitude and oscillation death in identical coupled oscillators, Phys. Rev. E, 90, Article 032906 pp. (2014)
[257] Banerjee, T.; Ghosh, D., Experimental observation of a transition from amplitude to oscillation death in coupled oscillators, Phys. Rev. E, 89, Article 062902 pp. (2014)
[258] Ngueuteu, G. S.M.; Yamapi, R.; Woafo, P., Fractional derivation stabilizing virtue-induced quenching phenomena in coupled oscillators, Europhys. Lett., 112, 30004 (2015)
[259] Nandan, M.; Hens, C. R.; Pal, P.; Dana, S. K., Transition from amplitude to oscillation death in a network of oscillators, Chaos, 24, Article 043103 pp. (2014) · Zbl 1361.34034
[260] Hens, C. R.; Pal, P.; Bhowmick, S. K.; Roy, P. K.; Sen, A.; Dana, S. K., Diverse routes of transition from amplitude to oscillation death in coupled oscillators under additional repulsive links, Phys. Rev. E, 89, Article 032901 pp. (2014)
[261] Chen, J.; Liu, W. Q.; Zhu, Y.; Xiao, J. H., The effects of dual-channel coupling on the transition from amplitude death to oscillation death, Europhys. Lett., 115, 20011 (2016)
[262] Bera, B. K.; Hens, C.; Bhowmick, S. K.; Pal, P.; Ghosh, D., Transition from homogeneous to inhomogeneous steady states in oscillators under cyclic coupling, Phys. Lett. A, 380, 130-134 (2016)
[263] Bi, H. J.; Hu, X.; Zhang, X. Y.; Zou, Y.; Liu, Z. H.; Guan, S. G., Explosive oscillation death in coupled Stuart-Landau oscillators, Europhys. Lett., 108, 50003 (2014)
[264] Boccaletti, S.; Almendral, J. A.; Guan, S. G.; Leyva, I.; Liu, Z. H.; Sendiña Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1-94 (2016) · Zbl 1359.34048
[265] D’Souza, R. M.; Gómez-Gardeñes, J.; Nagler, J.; Arenas, A., Explosive phenomena in complex networks, Adv. Phys., 68, 123-223 (2019)
[266] Gomez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, Article 128701 pp. (2011)
[267] Verma, U. K.; Sharma, A.; Kamal, N. K.; Shrimali, M. D., First order transition to oscillation death through an environment, Phys. Lett. A, 382, 2122-2126 (2018)
[268] Verma, U. K.; Sharma, A.; Kamal, N. K.; Shrimali, M. D., Explosive death in complex network, Chaos, 29, Article 063127 pp. (2019) · Zbl 1416.34044
[269] Mandal, S.; Shrimali, M. D., Achieving criticality for reservoir computing using environment-induced explosive death, Chaos, 31, Article 031101 pp. (2021) · Zbl 1459.34120
[270] Verma, U. K.; Sharma, A.; Kamal, N. K.; Kurths, J.; Shrimali, M. D., Explosive death induced by mean-field diffusion in identical oscillators, Sci. Rep., 7, 7936 (2017)
[271] Zhao, N.; Sun, Z.; Yang, X.; Xu, W., Explosive death of conjugate coupled Van der Pol oscillators on networks, Phys. Rev. E, 97, Article 062203 pp. (2018)
[272] Verma, U. K.; Chaurasia, S. S.; Sinha, S., Explosive death in nonlinear oscillators coupled by quorum sensing, Phys. Rev. E, 100, Article 032203 pp. (2019)
[273] Dixit, S.; Chowdhury, S. N.; Prasad, A.; Ghosh, D.; Shrimali, M. D., Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions, Chaos, 31, Article 011105 pp. (2021) · Zbl 1458.92033
[274] Dixit, S.; Chowdhury, S. N.; Ghosh, D.; Shrimali, M. D., Dynamic interaction induced explosive death, Europhys. Lett., 133, 40003 (2021)
[275] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, Article 174102 pp. (2004)
[276] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67 (2015) · Zbl 1392.34036
[277] Parastesh, F.; Jafari, S.; Azarnoush, H.; Shahriari, Z.; Wang, Z.; Boccaletti, S.; Perc, M., Chimeras, Phys. Rep., 898, 1-114 (2021) · Zbl 1490.34044
[278] Zakharova, A.; Kapeller, M.; Schöll, E., Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett., 112, Article 154101 pp. (2014)
[279] Schneider, I.; Kapeller, M.; Loos, S.; Zakharova, A.; Fiedler, B.; Schöll, E., Stable and transient multicluster oscillation death in nonlocally coupled networks, Phys. Rev. E, 92, Article 052915 pp. (2015)
[280] Banerjee, T., Mean-field-diffusion-induced chimera death state, Europhys. Lett., 110, 60003 (2015)
[281] Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., Impact of symmetry breaking in networks of globally coupled oscillators, Phys. Rev. E, 91, Article 052915 pp. (2015)
[282] Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M., Different kinds of chimera death states in nonlocally coupled oscillators, Phys. Rev. E, 93, Article 052213 pp. (2016)
[283] Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V., Stable amplitude chimera in a network of coupled Stuart-Landau oscillators, Phys. Rev. E, 98, Article 032301 pp. (2018)
[284] Xiao, G. B.; Liu, W. Q.; Lan, Y.; J. H, M.; Xiao, B., Stable amplitude chimera states and chimera death in repulsively coupled chaotic oscillators, Nonlinear Dynam., 93, 1047-1057 (2018)
[285] Verma, U. K.; Ambika, G., Amplitude chimera and chimera death induced by external agents in two-layer networks, Chaos, 30, Article 043104 pp. (2020) · Zbl 1437.34047
[286] Singh, R.; Sinha, S.; order, Spatiotemporal.; disorder, M., Spatiotemporal order disorder and propagating defects in homogeneous system of relaxation oscillators, Phys. Rev. E, 87, Article 012907 pp. (2013)
[287] Gambuzza, L. V.; Buscarino, A.; Chessari, S.; Fortuna, L.; Meucci, R.; Frasca, M., Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys. Rev. E, 90, Article 032905 pp. (2014)
[288] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-1028 (2010)
[289] Pahwa, S.; Scoglio, C.; Scala, A., Abruptness of cascade failures in power grids, Sci. Rep., 4, 3694 (2014)
[290] Gurtner, G. C.; Callaghan, M. J.; Longaker, M. T., Progress and potential for regenerative medicine, Annu. Rev. Med., 58, 299-312 (2007)
[291] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61, 485-491 (2008)
[292] Aton, S. J.; Herzog, E. D., Come together right...now: synchronization of rhythms in a mammalian circadian clock, Neuron, 48, 531-534 (2005)
[293] Antle, M. C.; Foley, D. K.; Foley, N.; Silver, R., Gates and oscillators: A network model of the brain clock, J. Biol. Rhythms, 18, 339-350 (2003)
[294] Kryukov, A. K.; Petrov, V. S.; Averyanova, L. S.; Osipov, G. V.; Chen, W.; Drugova, O.; Chan, C. K., Synchronization phenomena in mixed media of passive, excitable, and oscillatory cells, Chaos, 18, Article 037129 pp. (2008)
[295] Daido, H., Strong-coupling limit in heterogeneous populations of coupled oscillators, Phys. Rev. E, 84, Article 016215 pp. (2011)
[296] Daido, H.; Naknishi, K., Aging and clustering in globally coupled oscillators, Phys. Rev. E, 75, Article 056206 pp. (2007)
[297] Mukherjee, R.; Sen, A., Amplitude mediated chimera states with active and inactive oscillators, Chaos, 28, Article 053109 pp. (2018)
[298] Thakur, B.; Sharma, D.; Sen, A., Time-delay effects on the aging transition in a population of coupled oscillators, Phys. Rev. E, 90, Article 042904 pp. (2014)
[299] Rahman, B.; Blyuss, K. B.; Kyrychko, Y. N., Aging transition in systems of oscillators with global distributed-delay coupling, Phys. Rev. E, 96, Article 032203 pp. (2017)
[300] Ponrasu, K.; Gowthaman, I.; Chandrasekar, V. K.; Senthilkumar, D. V., Aging transition under weighted conjugate coupling, Europhys. Lett., 128, 58003 (2019)
[301] Bera, B. K., Additional repulsion reduces the dynamical resilience in the damaged networks, Chaos, 30, Article 023132 pp. (2020) · Zbl 1432.34062
[302] Singh, U.; Sathiyadevi, K.; Chandrasekar, V. K.; Zou, W.; Kurths, J.; Senthilkumar, D. V., Trade-off between filtering and symmetry breaking mean-field coupling in inducing macroscopic dynamical states, New J. Phys., 22, Article 093024 pp. (2020)
[303] Ratas, I.; Pyragas, K., Macroscopic self-oscillations and aging transition in a network of synaptically coupled quadratic integrate-and-fire neurons, Phys. Rev. E, 94, Article 032215 pp. (2016)
[304] Touboul, J. D.; Piette, C.; Venance, L.; Ermentrout, G. B., Noise-induced synchronization and antiresonance in interacting excitable systems: Applications to deep brain stimulation in parkinson’s disease, Phys. Rev. X, 10, Article 011073 pp. (2020)
[305] Sun, Z.; Liu, Y. Y.; Liu, K.; Yang, X.; Xu, W., Aging transition in mixed active and inactive fractional-order oscillators, Chaos, 29, Article 103150 pp. (2019) · Zbl 1425.34026
[306] Rakshit, B.; Rajendrakumar, N.; Balaram, B., Abnormal route to aging transition in a network of coupled oscillators, Chaos, 30, Article 101101 pp. (2020) · Zbl 1451.34064
[307] Daido, H., Aging transition and disorder-induced coherence in locally coupled oscillators, Europhys. Lett., 84, 10002 (2008)
[308] Daido, H., Suppression and recovery of spatiotemporal chaos in a ring of coupled oscillators with a single inactive site, Europhys. Lett., 87, 40001 (2009)
[309] Daido, H., Dynamics of a large ring of coupled active and inactive oscillators, Phys. Rev. E, 83, Article 026209 pp. (2011)
[310] Daido, H.; Nishio, K., Bifurcation and scaling at the aging transition boundary in globally coupled excitable and oscillatory units, Phys. Rev. E, 93, Article 052226 pp. (2016)
[311] Sun, Z.; Ma, N.; Xu, W., Aging transition by random errors, Sci. Rep., 7, 42715 (2017)
[312] Ray, A.; Kundu, S.; Ghosh, D., Aging transition in weighted homogeneous and heterogeneous networks, Europhys. Lett., 128, 40002 (2019)
[313] Tanaka, G.; Morino, K.; Aihara, K., Dynamical robustness in complex networks: The crucial role of low-degree nodes, Sci. Rep., 2, 232 (2012)
[314] He, Z.; Liu, S.; Zhan, M., Dynamical robustness analysis of weighted complex networks, Physica A, 392, 4181-4191 (2013) · Zbl 1395.34042
[315] Huang, W.; Zhang, X.; Hu, X.; Zou, Y.; Liu, Z.; Guan, S., Variation of critical point of aging transition in a networked oscillators system, Chaos, 24, Article 023122 pp. (2014) · Zbl 1345.34038
[316] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200 (2001)
[317] Tanaka, G.; Morino, K.; Daido, H.; Aihara, K., Dynamical robustness of coupled heterogeneous oscillators, Phys. Rev. E, 89, Article 052906 pp. (2014)
[318] Yuan, T.; Aihara, K.; Tanaka, G., Robustness and fragility in coupled oscillator networks under targeted attacks, Phys. Rev. E, 95, Article 012315 pp. (2017)
[319] Yuan, T.; Tanaka, G., Robustness of coupled oscillator networks with heterogeneous natural frequencies, Chaos, 27, Article 123105 pp. (2017) · Zbl 1390.34104
[320] Sasai, T.; Morino, K.; Tanaka, G.; Almendral, J. A.; Aihara, K., Robustness of oscillatory behavior in correlated networks, PLoS One, 10, Article e0123722 pp. (2015)
[321] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1-122 (2014)
[322] Song, X. F.; Wang, W. Y., Target inactivation and recovery in two-layer networks, Chin. Phys. Lett., 32, Article 110502 pp. (2015)
[323] Morino, K.; Tanaka, G.; Aihara, K., Robustness of multilayer oscillator networks, Phys. Rev. E, 83, Article 056208 pp. (2011)
[324] Konishi, K., Limitation of time-delay induced amplitude death, Phys. Lett. A, 341, 401-409 (2005) · Zbl 1171.81390
[325] Sugitani, Y.; Konishi, K.; Hara, N., Overcoming the odd number property of amplitude death in ring networks with dynamic connection, IFAC-PapersOnLine, 48, 111-115 (2015)
[326] Schöll, E.; Schuster, H. G., HandBook of Chaos Control (2008), Wiley-VCH: Wiley-VCH Weinheim · Zbl 1130.93001
[327] Nakajima, H., On analytical properties of delayed feedback control of chaos, Phys. Lett. A, 232, 207-210 (1997) · Zbl 1053.93509
[328] Pyragas, K., Control of chaos via an unstable delayed feedback controller, Phys. Rev. Lett., 86, 2265-2268 (2001)
[329] Fiedler, B.; Flunkert, V.; Georgi, M.; Hövel, P.; Schöll, E., Refuting the odd-number limitation of time-delayed feedback control, Phys. Rev. Lett., 98, Article 114101 pp. (2007)
[330] Pyragas, K.; Pyragas, V.; Kiss, I. Z.; Hudson, J. L., Stabilizing and tracking unknown steady states of dynamical systems, Phys. Rev. Lett., 89, Article 244103 pp. (2002)
[331] Pyragas, K.; Pyragas, V.; Kiss, I. Z.; Hudson, J. L., Adaptive control of unknown unstable steady states of dynamical systems, Phys. Rev. E, 70, Article 026215 pp. (2004)
[332] Zou, W.; Yao, C. G.; Zhan, M., Eliminating delay-induced oscillation death by gradient coupling, Phys. Rev. E, 82, Article 056203 pp. (2010)
[333] Liu, W. Q.; Xiao, J. H.; Li, L. X.; Wu, Y.; Lu, M., Effects of gradient coupling on amplitude death in nonidentical oscillators, Nonlinear Dynam., 69, 1041-1050 (2012)
[334] Franz, A. L.; Roy, R.; Shaw, L. B.; Schwartz, I. B., Changing dynamical complexity with time delay in coupled fiber laser oscillators, Phys. Rev. Lett., 99, Article 053905 pp. (2007)
[335] Zou, W.; Senthilkumar, D. V.; Zhan, M.; Kurths, J., Reviving oscillations in coupled nonlinear oscillators, Phys. Rev. Lett., 111, Article 014101 pp. (2013)
[336] Zou, W.; Sebek, M.; Kiss, I. Z.; Kurths, J., Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment, Chaos, 27, Article 061101 pp. (2017) · Zbl 1390.34089
[337] Yao, C. G.; Zhao, Q.; Zou, W., Eliminating amplitude death by the asymmetry coupling and process delay in coupled oscillators, Eur. Phys. J. B, 89, 29 (2016)
[338] Zou, W.; Zhan, M.; Kurths, J., The impact of propagation and processing delays on amplitude and oscillation deaths in the presence of symmetry-breaking coupling, Chaos, 27, Article 114303 pp. (2017) · Zbl 1390.34166
[339] Senthilkumar, D. V.; Suresh, K.; Chandrasekar, V. K.; Zou, W.; Dana, S. K.; Kathamuthu, T.; Kurths, J., Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators, Chaos, 26, Article 043112 pp. (2016)
[340] Zou, W.; Senthilkumar, D. V.; Nagao, R.; Kiss, I. Z.; Tang, Y.; Koseska, A.; Duan, J.; Kurths, J., Restoration of rhythmicity in diffusively coupled dynamical networks, Nature Commun., 6, 7709 (2015)
[341] Corless, R. M.; Gonnet, G. H.; Hare, D. E.G.; Jeffrey, D. J.; Knuth, D. E., On the Lambert W function, Adv. Comput. Math., 5, 329-359 (1996) · Zbl 0863.65008
[342] Nagao, R.; Zou, W.; Kurths, J.; Kiss, I. Z., Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations, Chaos, 26, Article 094808 pp. (2016)
[343] Ghosh, D.; Banerjee, T.; Kurths, J., Revival of oscillation from mean-field-induced death: Theory and experiment, Phys. Rev. E, 92, Article 052908 pp. (2015)
[344] Sharma, P. R.; Kamal, N. K.; Verma, U. K.; Suresh, K.; Thamilmaran, K.; Shrimali, M. D., Suppression and revival of oscillation in indirectly coupled limit cycle oscillators, Phys. Lett. A, 380, 3178-3184 (2016)
[345] Majhi, S.; Bera, B. K.; Bhowmick, S. K.; Ghosh, D., Restoration of oscillation in network of oscillators in presence of direct and indirect interactions, Phys. Lett. A, 380, 3617-3624 (2016)
[346] Bera, B. K., Quenching and restoration of oscillations under environmental interactions, Commun. Nonlinear Sci. Numer. Simul., 92, Article 105477 pp. (2021) · Zbl 1456.34030
[347] Bandyopadhyay, B.; Banerjee, T., Revival of oscillation and symmetry breaking in coupled quantum oscillators, Chaos, 31, Article 063109 pp. (2021) · Zbl 1465.81015
[348] Chandrasekar, V. K.; Karthiga, S.; Lakshmanan, M., Feedback as a mechanism for the resurrection of oscillations from death states, Phys. Rev. E, 92, Article 012903 pp. (2015)
[349] Zhao, N.; Sun, Z., Overcoming oscillation quenching via mean-field feedback, Int. J. Bifurcation Chaos, 30, Article 2050094 pp. (2020) · Zbl 1446.34095
[350] Chakraborty, S.; Dandapathak, M.; Sarkar, S. S.D., Effect of self feedback on mean-field coupled oscillators: Revival and quenching of oscillations, Int. J. Bifurcation Chaos, 31, Article 2150078 pp. (2021) · Zbl 1467.93108
[351] Tamaševičiūtė, E.; Mykolaitis, G.; Bumelienė, S.; Tamaševičius, A., Stabilizing saddles, Phys. Rev. E, 88 (2013), 060901(R)
[352] Biswas, D.; Banerjee, T.; Kurths, J., Effect of filtered feedback on birhythmicity: Suppression of birhythmic oscillation, Phys. Rev. E, 99, Article 062210 pp. (2019)
[353] Keyser, G. F.; Holloway, J. A.; Prather, D. D., Entrainment boundaries of relaxation oscillators coupled by low pass filters, J. Interdisc. Cycle Res., 10, 239-248 (1979)
[354] Kim, M. Y.; Sramek, C.; Uchida, A.; Roy, R., Synchronization of unidirectionally coupled Mackey-Glass analog circuits with frequency bandwidth limitations, Phys. Rev. E, 74, Article 016211 pp. (2006)
[355] Soriano, M. C.; Ruiz-Oliveras, F.; Colet, P.; Mirasso, C. R., Synchronization properties of coupled semiconductor lasers subject to filtered optical feedback, Phys. Rev. E, 78, Article 046218 pp. (2008)
[356] Zou, W.; Zhan, M.; Kurths, J., Revoking amplitude and oscillation deaths by low-pass filter in coupled oscillators, Phys. Rev. E, 95, Article 062206 pp. (2017)
[357] Zou, W.; Ocampo-Espindola, J. L.; Senthilkumar, D. V.; Kiss, I. Z.; Zhan, M.; Kurths, J., Quenching and revival of oscillations induced by coupling through adaptive variables, Phys. Rev. E, 99, Article 032214 pp. (2019)
[358] Kumar, K.; Biswas, D.; Banerjee, T.; Zou, W.; Kurths, J.; Senthilkumar, D. V., Revival and death of oscillation under mean-field coupling: Interplay of intrinsic and extrinsic filtering, Phys. Rev. E, 100, Article 052212 pp. (2019)
[359] Banerjee, T.; Biswas, D.; Ghosh, D.; Bandyopadhyay, B.; Kurths, J., Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators, Phys. Rev. E, 97, Article 042218 pp. (2018)
[360] Banerjee, T.; Bandyopadhyay, B.; Zakharova, A.; Schöll, E., Filtering suppresses amplitude chimera, Front. Appl. Math. Stat., 5, 8 (2019)
[361] Lei, X. Q.; Liu, W. Q.; Zou, W.; Kurths, J., Coexistence of oscillation and quenching states: Effect of low-pass active filtering in coupled oscillators, Chaos, 29, Article 073110 pp. (2019) · Zbl 1420.34076
[362] Yadav, M.; Sharma, A.; Shrimali, M. D.; Sinha, S., Revival of oscillations via common environment, Nonlinear Dynam., 91, 2219-2225 (2018)
[363] Kuznetsov, A.; Kærn, M.; Kopell, N., Synchrony in a population of hysteresis-based genetic oscillators, SIAM J. Appl. Math., 65, 392-425 (2004) · Zbl 1090.34031
[364] DeMonte, S.; D’Ovidio, F.; Danø, S.; Sørensen, P. G., Dynamical quorum sensing: Population density encoded in cellular dynamics, Proc. Natl. Acad. Sci. USA, 104, 18377-18381 (2007)
[365] Morino, K.; Tanaka, G.; Aihara, K., Efficient recovery of dynamic behavior in coupled oscillator networks, Phys. Rev. E, 88, Article 032909 pp. (2013)
[366] Liu, Y.; Zou, W.; Zhan, M.; Duan, J.; Kurths, J., Enhancing dynamical robustness in aging networks of coupled nonlinear oscillators, Europhys. Lett., 114, 40004 (2016)
[367] Kundu, S.; Majhi, S.; Ghosh, D., Resumption of dynamism in damaged networks of coupled oscillators, Phys. Rev. E, 97, Article 052313 pp. (2018)
[368] Kundu, S.; Majhi, S.; Karmakar, P.; Ghosh, D.; Rakshit, B., Augmentation of dynamical persistence in networks through asymmetric interaction, Europhys. Lett., 123, 30001 (2018)
[369] Bera, B. K., Low pass filtering mechanism enhancing dynamical robustness in coupled oscillatory networks, Chaos, 29, Article 041104 pp. (2019)
[370] Yi, M.; Yao, C. G., A chimera oscillatory state in a globally delay-coupled oscillator network, Complexity, 2020, Article 1292417 pp. (2020)
[371] Sharma, A.; Rakshit, B., Enhancement of dynamical robustness in a mean-field coupled network through self-feedback delay, Chaos, 31, Article 013114 pp. (2021) · Zbl 1458.34092
[372] Mandal, T.; Singla, T.; Rivera, M.; Parmananda, P., Conjugate feedback induced suppression and generation of oscillations in the Chua circuit: Experiments and simulations, Chaos, 23, Article 013130 pp. (2013) · Zbl 1319.34088
[373] Chakraborty, A.; Ray, A.; Basak, S.; Roy Chowdhury, A., On a study of optically coupled memristive Chua circuits-rhythmogenesis and amplitude death, Phys. Lett. A, 379, 1418-1424 (2015) · Zbl 1349.34147
[374] Morino, K.; Tanaka, G.; Aihara, K., Bifurcation mechanism for emergence of spontaneous oscillations in coupled heterogeneous excitable units, Phys. Rev. E, 98, Article 052210 pp. (2018)
[375] Yao, C. G.; He, Z. W.; Zou, W., Oscillation behavior driven by processing delay in diffusively coupled inactive systems: Cluster synchronization and multistability, Chaos, 30, Article 123137 pp. (2020) · Zbl 1451.34087
[376] Smale, S., The Hopf Bifurcation and Its Applications, 354-367 (1976), Springer · Zbl 0346.58007
[377] Pogromsky, A.; Glad, T.; Nijmeijer, H., On diffusion driven oscillations in coupled dynamical systems, Int. J. Bifurcation Chaos, 9, 629-644 (1999) · Zbl 0970.34029
[378] Reddy, D. V.R.; Sen, A.; Johnston, G. L., Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators, Phys. Rev. Lett., 85, 3381-3384 (2000)
[379] Suresh, K.; Shrimali, M. D.; Prasad, A.; Thamilmaran, K., Experimental evidence for amplitude death induced by a time-varying interaction, Phys. Lett. A, 378, 2845-2850 (2014) · Zbl 1298.34095
[380] Sugitani, Y.; Konishi, K.; Hara, N., Experimental verification of amplitude death induced by a periodic time-varying delay-connection, Nonlinear Dynam., 70, 2227-2235 (2012) · Zbl 1268.93086
[381] Masamura, S.; Iwamoto, T.; Sugitani, Y.; Konishi, K.; Hara, N., Experimental investigation of amplitude death in delay-coupled double-scroll circuits with randomly time-varying network topology, Nonlinear Dynam., 99, 3155-3168 (2020)
[382] Iwamoto, T.; Sugitani, Y.; Masamura, S.; Konishi, K.; Hara, N., Amplitude suppression of oscillators with delay connections and slow switching topology, Phys. Rev. E, 102, Article 032206 pp. (2020)
[383] Kuntsevich, B. F.; Pisarchik, A. N., Synchronization effects in a dual-wavelength class-B laser with modulated losses, Phys. Rev. E, 64, Article 046221 pp. (2001)
[384] Oliva, R. A.; Strogatz, S. H., Dynamics of a large array of globally coupled lasers with distributed frequencies, Int. J. Bifurcation Chaos, 11, 2359-2374 (2001)
[385] Vicente, R.; Tang, S.; Mulet, J.; Mirasso, C. R.; Liu, J. M., Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling, Phys. Rev. E, 73, Article 047201 pp. (2006)
[386] Wei, M. D.; Lun, J. C., Amplitude death in coupled chaotic solid-state lasers with cavity-configuration-dependent instabilities, Appl. Phys. Lett., 91, Article 061121 pp. (2007)
[387] Hynne, F.; SØrensen, P. G., Quenching of chemical oscillations, J. Phys. Chem., 91, 6573-6575 (1987)
[388] Yoshimoto, M., Phase-death mode in two-coupled chemical oscillators studied with reactors of different volume and by simulation, Chem. Phys. Lett., 280, 539-543 (1997)
[389] Zeyer, K. P.; Mangold, M.; Gilles, E. D., Experimentally coupled thermokinetic oscillators: Phase death and rhythmogenesis, J. Phys. Chem. A, 105, 7216-7224 (2001)
[390] Dolnik, M.; Epstein, I. R., Coupled chaotic chemical oscillators, Phys. Rev. E, 54, 3361-3368 (1996)
[391] Toiya, M.; Vanag, V. K.; Epstein, I. R., Diffusively coupled chemical oscillators in a microfluidic assembly, Angew. Chem. Int. Ed. Engl., 47, 7753-7755 (2008)
[392] Taylor, A. F.; Tinsley, M. R.; Wang, F.; Huang, Z.; Showalter, K., Dynamical quorum sensing and synchronization in large populations of chemical oscillators, Science, 323, 614-617 (2009)
[393] Koper, M., Nonlinear phenomena in electrochemical systems, J. Chem. Soc. Faraday Trans., 94, 1369-1378 (1998)
[394] Kiss, I. Z.; Zhai, Y.; Hudson, J. L., Emerging coherence in a population of chemical oscillators, Science, 296, 1676-1678 (2002)
[395] Zhai, Y.; Kiss, I. Z.; Hudson, J. L., Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: Desynchronization and clustering, Ind. Eng. Chem. Res., 47, 3502-3514 (2008)
[396] Jain, S.; Kiss, I. Z.; Breidenich, J.; Hudson, J. L., The effect of IR compensation on stationary and oscillatory patterns in dual-electrode metal dissolution systems, Electrochim. Acta., 55, 363-373 (2009)
[397] Manoj, K.; Pawar, S. A.; Sujith, R. I., Experimental evidence of amplitude death and phase-flip bifurcation between in-phase and anti-phase synchronization, Sci. Rep., 8, 11626 (2018)
[398] Herrero, R.; Figueras, M.; Rius, J.; Pi, F.; Orriols, G., Experimental observation of the amplitude death dffect in two coupled nonlinear oscillators, Phys. Rev. Lett., 84, 5312-5315 (2000)
[399] Strimbu, C. E.; Kao, A.; Tokuda, J.; Ramunno-Johnson, D.; Bozovic, D., Dynamic state and evoked motility in coupled hair bundles of the bullfrog sacculus, Hear. Res., 265, 38-45 (2010)
[400] Strimbu, C. E.; Fredrikson-Hemsing, L.; Bozovic, D., Coupling and elastic loading affects the active response by the inner ear hair cell bundles, PLoS ONE, 7, Article e33862 pp. (2012)
[401] Ahn, K. H., Enhanced signal-to-noise ratios in frog hearing can be achieved through amplitude death, J. R. Soc. Interface, 10, Article 20130525 pp. (2013)
[402] Kim, K. J.; Ahn, K. H., Amplitude death of coupled hair bundles with stochastic channel noise, Phys. Rev. E, 89, Article 042703 pp. (2014)
[403] Liebhold, A.; Koenig, W. D.; Bjørnstad, O. N., Spatial synchrony in population dynamics, Annu. Rev. Ecol. Evol. Syst., 35, 467-490 (2004)
[404] Heino, M.; Kaitala, V.; Ranta, E.; Lindström, J., Synchronous dynamics and rates of extinction in spatially structured populations, Proc. R. Soc. B Biol. Sci., 264, 481-486 (1997)
[405] Blasius, B.; Huppert, A.; Stone, L., Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399, 354-359 (1999)
[406] Steiner, C. F.; Stockwell, R. D.; Kalaimani, V.; Aqel, Z., Population synchrony and stability in environmentally forced metacommunities, Oikos, 112, 1195-1206 (2013)
[407] Earn, D. J.D.; Levin, S. A.; Rohani, P., Coherence and conservation, Science, 290, 1360-1364 (2000)
[408] Briggs, C. J.; Hoopes, M. F., Stabilizing effects in spatial parasitoid-host and predator-prey models: A review, Theor. Popul. Biol., 65, 299-315 (2004) · Zbl 1109.92047
[409] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 209-223 (1963)
[410] Fussmann, G. F.; Ellner, S. P.; Shertzer, K. W.; Hairston, N. G., Crossing the hopf bifurcation in a live predator-prey system, Science, 290, 1358-1360 (2000)
[411] Arumugam, R.; Dutta, P. S.; Banerjee, T., Environmental coupling in ecosystems: From oscillation quenching to rhythmogenesis, Phys. Rev. E, 94, Article 022206 pp. (2016)
[412] Dutta, P. S.; Banerjee, T., Spatial coexistence of synchronized oscillation and death: A chimeralike state, Phys. Rev. E, 92, Article 042919 pp. (2015)
[413] Banerjee, T.; Dutta, P. S.; Zakharova, A.; Schöll, E., Chimera patterns induced by distance-dependent power-law coupling in ecological networks, Phys. Rev. E, 94, Article 032206 pp. (2016)
[414] Hyodo, H.; Iwasaki, M.; Biwa, T., Suppression of Rijke tube oscillations by delay coupling, J. Appl. Phys., 128, Article 094902 pp. (2020)
[415] Swift, G. W., Thermoacoustic engines, J. Acoust. Soc. Am., 84, 1145-1180 (1988)
[416] Huang, Y.; Yang, V., Dynamics and stability of lean-premixed swirl-stabilized combustion, Prog. Energy Combust. Sci., 35, 293-364 (2009)
[417] Balasubramanian, K.; Sujith, R. I., Thermoacoustic instability in a Rijke tube: Non-normality and nonlinearity, Phys. Fluids, 20, Article 044103 pp. (2008) · Zbl 1182.76048
[418] Thomas, N.; Mondal, S.; Pawar, S. A.; Sujith, R. I., Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators, Chaos, 28, Article 033119 pp. (2018) · Zbl 1390.34155
[419] Thomas, N.; Mondal, S.; Pawar, S. A.; Sujith, R. I., Effect of noise amplification during the transition to amplitude death in coupled thermoacoustic oscillators, Chaos, 28, Article 093116 pp. (2018)
[420] Hyodo, H.; Biwa, T., Stabilization of thermoacoustic oscillators by delay coupling, Phys. Rev. E, 98, Article 052223 pp. (2018)
[421] Jegal, H.; Moon, K.; Gu, J.; Li, L. K.B.; Kim, K. T., Mutual synchronization of two lean-premixed gas turbine combustors: Phase locking and amplitude death, Combust. Flame, 206, 424-437 (2019)
[422] Dange, S.; Manoj, K.; Banerjee, S.; Pawar, S. A.; Mondal, S.; Sujith, R. I., Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems, Chaos, 29, Article 093135 pp. (2019)
[423] Wei, D. Q.; Zhang, B.; Luo, X. S.; Zeng, S. Y.; Qiu, D. Y., Effects of couplings on the collective dynamics of permanent-magnet dynchronous motors, IEEE Trans. Circuits Sys. II: Exp. Briefs, 60, 692-696 (2013)
[424] Loria, A., Robust linear control of (chaotic) permanent-magnet synchronous motors with uncertainties, IEEE Trans. Circuits Syst. I, 56, 2109-2122 (2009)
[425] Ataei, M.; Kiyoumarsi, A.; Ghorbani, B., Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement, Phys. Lett. A, 374, 4226-4230 (2010) · Zbl 1238.34118
[426] Zhang, H. C.; Xu, D. L.; Lu, C.; Xia, S. Y.; Qi, E. R.; Hu, J. J.; Wu, Y. S., Network dynamic stability of floating airport based on amplitude death, Ocean Eng., 104, 129-139 (2015)
[427] Zhang, H. C.; Xu, D. L.; Lu, C.; Qi, E. R.; Hu, J. J.; Wu, Y. S., Amplitude death of a multi-module floating airport, Nonlinear Dynam., 79, 2385-2394 (2015)
[428] Zhang, H. C.; Xu, D. L.; Lu, C.; Qi, E. R.; Tian, C.; Wu, Y. S., Connection effect on amplitude death stability of multi-module floating airport, Ocean Eng., 129, 46-56 (2017)
[429] Barron, M. A.; Hilerio, I.; Plascencia, G., Numerical analysis of oscillation death in coupled self-excited elastic beams, Adv. Mech. Eng., 2012, Article 746537 pp. (2012)
[430] Huddy, S. R.; Skufca, J. D., Amplitude death solutions for stabilization of DC microgrids with instantaneous constant-power loads, IEEE Trans. Power Electron., 28, 247-253 (2013)
[431] Mishra, A.; Saha, S.; Roy, P. K.; Kapitaniak, T.; Dana, S. K., Multicluster oscillation death and chimeralike states in globally coupled Josephson Junctions, Chaos, 27, Article 023110 pp. (2017)
[432] Raaj, A.; Mondal, S.; Jagdish, V., Investigating amplitude death in a coupled nonlinear aeroelastic system, Int. J. Non-Linear Mech., 129, Article 103659 pp. (2021)
[433] Menck, P. J.; Heitzig, J.; Marwan, N.; Kurths, J., How basin stability complements the linear-stability paradigm, Nat. Phys., 9, 89-92 (2013)
[434] Mitra, C.; Choudhary, A.; Sinha, S.; Kurths, J.; Donner, R. V., Multiple-node basin stability in complex dynamical networks, Phys. Rev. E, 95, Article 032317 pp. (2017)
[435] Asllani, M.; Challenger, J. D.; Pavone, F. S.; Sacconi, L.; Fanelli, D., The theory of pattern formation on directed networks, Nature Commun., 5, 4517 (2014)
[436] Challenger, J. D.; Burioni, R.; Fanelli, D., Turing-like instabilities from a limit cycle, Phys. Rev. E, 92, Article 022818 pp. (2015)
[437] Glass, L., Synchronization and rhythmic processes in physiology, Nature, 410, 277-284 (2001)
[438] Tarnowski, W.; Neri, I.; Vivo, P., Universal transient behavior in large dynamical systems on networks, Phys. Rev. Res., 2, Article 023333 pp. (2020)
[439] Ray, A.; Pal, A.; Ghosh, D.; Dana, S. K.; Hens, C., Mitigating long transient time in deterministic systems by resetting, Chaos, 31, Article 011103 pp. (2021) · Zbl 1466.37060
[440] Konishi, K.; Sugitani, Y.; Hara, N., Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control, Phys. Rev. E, 89, Article 022906 pp. (2014)
[441] Konishi, K.; Sugitani, Y.; Hara, N., Dynamics of dc bus networks and their stabilization by decentralized delayed feedback, Phys. Rev. E, 91, Article 012911 pp. (2015)
[442] Popovych, O. V.; Lysyansky, B.; Rosenblum, M.; Pikovsky, A.; Tass, P. A., Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation, PLoS ONE, 12, Article e0173363 pp. (2017)
[443] Gallego, B.; Cessi, P., Decadal variability of two oceans and an atmosphere, J. Clim., 14, 2815-2832 (2001)
[444] Fan, J. F.; Meng, J.; Ludescher, J.; Chen, X. S.; Ashkenazy, Y.; Kurths, J.; Havlin, S.; Schellnhuber, H. J., Statistical physics approaches to the complex Earth system, Phys. Rep., 896, 1-84 (2021) · Zbl 1474.86008
[445] Alexandrov, D. V.; Bashkirtseva, I. A.; Crucifix, M.; Ryashko, L. B., Nonlinear climate dynamics: From deterministic behaviour to stochastic excitability and chaos, Phys. Rep., 902, 1-60 (2021) · Zbl 1474.86007
[446] Barnosky, A. D.; Matzke, N.; Tomiya, S.; Wogan, G. O.U.; Swartz, B.; Quental, T. B.; Marshall, C.; McGuire, J. L.; Lindsey, E. L.; Maguire, K. C.; Mersey, B.; Ferrer, E. A., Has the earth’s sixth mass extinction already arrived?, Nature, 471, 51-57 (2011)
[447] Haldane, A. G.; May, R. M., Systemic risk in banking ecosystems, Nature, 469, 351-355 (2011)
[448] Lörincz, L.; Koltai, J.; Györ, A. F.; Takács, K., Collapse of an online social network: Burning social capital to create it?, Soc. Netw., 57, 43-53 (2019)
[449] Motter, A. E.; Myers, S. A.; Anghel, M.; Nishikawa, T., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 191-197 (2013)
[450] Xia, H., Improve the resilience of multilayer supply chain networks, Complexity, 2020, Article 6596483 pp. (2020)
[451] Ackerman, F., Worst-Case Economics: Extreme Events in Climate and Finance (2017), Anthem Press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.