×

Vortex on surfaces and Brownian motion in higher dimensions: special metrics. (English) Zbl 07812567

Summary: A single hydrodynamic vortex on a surface will in general move unless its Riemannian metric is a special “Steady Vortex Metric” (SVM). Metrics of constant curvature are SVM only in surfaces of genus zero and one. In this paper:
1.
I show that K. Okikiolu’s work on the regularization of the spectral zeta function leads to the conclusion that each conformal class of every compact surface with a genus of two or more possesses at least one steady vortex metric (SVM).
2.
I apply a probabilistic interpretation of the regularized zeta function for surfaces, as developed by P. G. Doyle and J. Steiner, to extend the concept of SVM to higher dimensions.
The new special metric, which aligns with the Steady Vortex Metric (SVM) in two dimensions, has been termed the “Uniform Drainage Metric” for the following reason: For a compact Riemannian manifold \(M\), the “narrow escape time” (NET) is defined as the expected time for a Brownian motion starting at a point \(p\) in \(M\setminus B_{\epsilon} (q)\) to remain within this region before escaping through the small ball \(B_{\epsilon} (q)\), which is centered at \(q\) with radius \(\epsilon\) and acts as the escape window. The manifold is said to possess a uniform drainage metric if, and only if, the spatial average of NET, calculated across a uniformly distributed set of initial points \(p\), remains invariant regardless of the position of the escape window \(B_{\epsilon} (q)\), as \(\epsilon\) approaches \(0\).

MSC:

76B47 Vortex flows for incompressible inviscid fluids
30F30 Differentials on Riemann surfaces
58J65 Diffusion processes and stochastic analysis on manifolds
31C12 Potential theory on Riemannian manifolds and other spaces
60J45 Probabilistic potential theory
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] Arnol’d, VI, Mathematical methods of classical mechanics (2013), UK: Springer, UK
[2] Aubin, T., Some nonlinear problems in Riemannian geometry (2013), Berlin: Springer, Berlin
[3] Bandle, C.; Flucher, M., Harmonic radius and concentration of energy; hyperbolic radius and Liouville’s equations \(\delta u=e\hat{\!}u\) and \(\delta u=u\hat{\!}n+2n-2\), Siam Rev., 38, 2, 191-238 (1996) · Zbl 0857.35034 · doi:10.1137/1038039
[4] Bilal, A.; Ferrari, F., Multi-loop zeta function regularization and spectral cutoff in curved spacetime, Nucl. Phys. B, 877, 3, 956-1027 (2013) · Zbl 1284.81220 · doi:10.1016/j.nuclphysb.2013.10.003
[5] Boatto, S., Koiller, J.: Vortices on closed surfaces. arXiv preprint arXiv:0802.4313, (2008)
[6] Boatto, S.; Koiller, J., Vortices on closed surfaces, Geometry, 185-237 (2015), Berlin: Springer, Berlin · Zbl 1402.76034
[7] Borisov, AV; Mamaev, IS; Ramodanov, SM, Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface, Regul. Chaotic Dyn., 15, 4-5, 440-461 (2010) · Zbl 1258.76050 · doi:10.1134/S1560354710040040
[8] Chicone, C., The monotonicity of the period function for planar hamiltonian vector fields, J. Diff. Equ., 69, 3, 310-321 (1987) · Zbl 0622.34033 · doi:10.1016/0022-0396(87)90122-7
[9] De Rham, G., Differentiable manifolds: forms, currents, harmonic forms (2012), Berlin: Springer, Berlin
[10] Ding, W.; Jost, J.; Li, J.; Wang, G., The differential equation \(\delta u= 8\pi - 8\pi h\exp u\) on a compact riemann surface (1997), Citeseer: In ASIAN J. MATH, Citeseer
[11] Doyle, P.G., Steiner, J.: Spectral invariants and playing hide-and-seek on surfaces. arXiv preprint arXiv:1710.09857, (2017)
[12] Dritschel, D.G., Boatto, S.: The motion of point vortices on closed surfaces. In Proc. R. Soc. A, volume 471, page 20140890. The Royal Society, (2015) · Zbl 1371.76042
[13] El Soufi, A.; Ilias, S., Critical metrics of the trace of the heat kernel on a compact manifold, J. Math. Pures Appliquées, 81, 10, 1053-1070 (2002) · Zbl 1037.58010 · doi:10.1016/S0021-7824(02)01271-0
[14] Farkas, HM; Kra, I., Riemann surfaces (1992), Berlin: Springer, Berlin · Zbl 0764.30001 · doi:10.1007/978-1-4612-2034-3
[15] Fay, J., Kernel functions, analytic torsion, and moduli spaces, Mem. Am. Math. Soc., 96, 464 (1992) · Zbl 0777.32011
[16] Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydromechanics. Preprint in TRITA-MAT-1997-MA-02, (1997)
[17] Flucher, M., Variational problems with concentration (1999), Berlin: Springer, Berlin · Zbl 0940.35006 · doi:10.1007/978-3-0348-8687-1
[18] Garabedian, PR, Partial Differential Equations (1986), New York, NY: Chelsea Publishing Company, New York, NY
[19] Garabedian, PR, Partial Differential Equations (1986), New York, N.Y.: Chelsea Publishing Company, New York, N.Y.
[20] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, volume 224. springer, (2001) · Zbl 1042.35002
[21] Gustafsson, B.: On the motion of a vortex in two-dimensional flow of an ideal fluid in simply and multiply connected domains. Res. Bull. TRITA-MAT-1979-7, Mathematics, (1979)
[22] Gustafsson, B., Vortex motion and geometric function theory: the role of connections, Philos. Trans. R. Soc. A, 377, 2158, 20180341 (2019) · Zbl 1462.70010 · doi:10.1098/rsta.2018.0341
[23] Gustafsson, B., Vortex pairs and dipoles on closed surfaces, J. Nonlinear Sci., 32, 62 (2022) · Zbl 1494.76023 · doi:10.1007/s00332-022-09822-9
[24] Grotta-Ragazzo, C.: Errata and Addenda to: “Hydrodynamic Vortex on Surfaces” and “The Motion of a Vortex on a Closed Surface of Constant Negative Curvature.” J. Nonlinear Sci. (2022). doi:10.1007/s00332-022-09817-6 · Zbl 1494.76022
[25] Habermann, L.; Jost, J., Green functions and conformal geometry, J. Differ. Geom., 53, 3, 405-442 (1999) · Zbl 1071.53023 · doi:10.4310/jdg/1214425634
[26] Holcman, D.; Schuss, Z., The narrow escape problem, Siam Rev., 56, 2, 213-257 (2014) · Zbl 1310.60113 · doi:10.1137/120898395
[27] Jorgenson, J., Kramer, J.: Bounds on Faltings’s delta function through covers. Annal. Math., 1-43, (2009) · Zbl 1169.14020
[28] Jost, J., Geometry and physics (2009), Berlin: Springer, Berlin · Zbl 1176.53001 · doi:10.1007/978-3-642-00541-1
[29] Jost, J., Compact Riemann surfaces: an introduction to contemporary mathematics (2013), Berlin: Springer, Berlin
[30] Lewittes, J., Differentials and metrics on riemann surfaces, Trans. Am. Math. Soc., 139, 311-318 (1969) · Zbl 0174.37302
[31] Lin, C-S; Lucia, M., Uniqueness of solutions for a mean field equation on torus, J. Differ. Equ., 229, 1, 172-185 (2006) · Zbl 1105.58005 · doi:10.1016/j.jde.2005.11.003
[32] Minakshisundaram, S.; Pleijel, A., Some properties of the eigenfunctions of the laplace-operator on riemannian manifolds, Can. J. Math., 1, 242-256, 9 (1949) · Zbl 0041.42701
[33] Moretti, V.: Proof of the symmetry of the off-diagonal heat-kernel and Hadamard’s expansion coefficients in general \(c^\infty\) riemannian manifolds. Commun. Math. Phys. 208(2), 283-308 (1999) · Zbl 0960.58024
[34] Morpurgo, C., Zeta functions on \(S^2\), Contemp. Math., 201, 213-226 (1996) · doi:10.1090/conm/201/02611
[35] Nolasco, M.; Tarantello, G., On a sharp sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., 145, 2, 161-195 (1998) · Zbl 0980.46022 · doi:10.1007/s002050050127
[36] Okikiolu, K., A negative mass theorem for the 2-torus, Commun. Math. Phys., 284, 3, 775-802 (2008) · Zbl 1167.53038 · doi:10.1007/s00220-008-0644-9
[37] Okikiolu, K., A negative mass theorem for surfaces of positive genus, Commun. Math. Phys., 290, 3, 1025-1031 (2009) · Zbl 1184.53046 · doi:10.1007/s00220-008-0722-z
[38] Polterovich, I., Heat invariants of riemannian manifolds, Isr. J. Math., 119, 1, 239-252 (2000) · Zbl 0996.58019 · doi:10.1007/BF02810670
[39] Ragazzo, CG, The motion of a vortex on a closed surface of constant negative curvature, Proc. R. Soc. A Math. Phys. Eng. Sci., 473, 2206, 20170447 (2017) · Zbl 1404.76061
[40] Ragazzo, CG; de Barros Viglioni, HH, Hydrodynamic vortex on surfaces, J. Nonlinear Sci., 27, 5, 1609-1640 (2017) · Zbl 1386.70034 · doi:10.1007/s00332-017-9380-7
[41] Rosenberg, S., The Laplacian on a Riemannian manifold an introduction to analysis on manifolds (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0868.58074 · doi:10.1017/CBO9780511623783
[42] Royden, HL, Function theory on compact riemann surfaces, J. d’Analyse Mathématique, 18, 1, 295-327 (1967) · Zbl 0153.39801 · doi:10.1007/BF02798051
[43] Steiner, J., A geometrical mass and its extremal properties for metrics on \(S^2\), Duke Math. J., 129, 1, 63-86 (2005) · Zbl 1144.53055 · doi:10.1215/S0012-7094-04-12913-6
[44] Wentworth, R., The asymptotics of the Arakelov-Green’s function and Faltings’ delta invariant, Commun. Math. Phys., 137, 427-459 (1991) · Zbl 0820.14017 · doi:10.1007/BF02100272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.