×

Box-counting by Hölder’s traveling salesman. (English) Zbl 1439.28007

The paper is devoted to the relationship between the property of a set in a metric space to be covered by a Hölder curve and the box-counting dimension. More precisely, let \(Y\) be a subset of a complete, quasiconvex metric space \(X\), and \({N(Y,\varepsilon)}\) denotes the minimal number of balls of radius \({\varepsilon>0}\) needed to cover \(Y.\) The first main result states that if for some \({d\geq1}\) and \({\varepsilon_0>0}\) there is the Dini condition \[ \sum_{k\geq0}N(Y,\varepsilon_02^{-k})2^{-kd}<\infty, \] then \(Y\) can be covered by a \(1/d\)-Hölder curve. In the Euclidean space \({\mathbb{R}^n}\) a much stronger result is due to M. Badger et al. [Adv. Math. 349, 564–647 (2019; Zbl 1411.28001)].
The second main result is the construction of a compact set \(K\), for each \({d\in[1,2)}\), in the plane with the following properties: 1) the lower box-counting dimension of \(K\) is zero and the upper box-counting dimension of \(K\) equals \(d\); 2) the Dini-type condition for \(K\) does not hold; 3) \(K\) can not be covered even not by a countable collection of \(1/d\)-Hölder curves.
The construction of \(K\) uses a modification of the construction of the standard four corner 1/4 Cantor set. The proof of some properties relies on a result of P. W. Jones [Invent. Math. 102, No. 1, 1–15 (1990; Zbl 0731.30018)].

MSC:

28A78 Hausdorff and packing measures
53A04 Curves in Euclidean and related spaces

References:

[1] Azzam, J., Hausdorff dimension of wiggly metric spaces, Ark. Mat., 53, 1, 1-36 (2015) · Zbl 1319.30050 · doi:10.1007/s11512-014-0197-4
[2] Badger, M.; Naples, L.; Vellis, V., Hölder curves and parametrizations in the analyst’s traveling salesman theorem, Adv. Math., 349, 564-647 (2019) · Zbl 1411.28001 · doi:10.1016/j.aim.2019.04.011
[3] Badger, M.; Vellis, V., Geometry of measures in real dimensions via Hölder parameterizations, J. Geom. Anal., 29, 2, 1153-1192 (2019) · Zbl 1481.28006 · doi:10.1007/s12220-018-0034-2
[4] Bishop, CJ; Jones, PW, Wiggly sets and limit sets, Ark. Mat., 35, 2, 201-224 (1997) · Zbl 0939.30031 · doi:10.1007/BF02559967
[5] Bishop, CJ; Peres, Y., Fractals in Probability and Analysis (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1390.28012
[6] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry. Graduate Studies in Mathematics, 33. (2001), Providence, RI: AMS, Providence, RI · Zbl 0981.51016
[7] Falconer, K., Fractal Geometry. Mathematical Foundations and Applications (2014), Chichester: Wiley, Chichester · Zbl 1285.28011
[8] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969) · Zbl 0176.00801
[9] Jones, PW, Rectifiable sets and the traveling salesman problem, Invent. Math., 102, 1-15 (1990) · Zbl 0731.30018 · doi:10.1007/BF01233418
[10] Konyagin, SV, On the level sets of Lipschitz functions, Tatra Mt. Math. Publ., 2, 51-59 (1993) · Zbl 0790.26012
[11] Okikiolu, K., Characterization of subsets of rectifiable curves in \({\mathbb{R}}^n\), J. Lond. Math. Soc., 46, 2, 336-348 (1992) · Zbl 0758.57020 · doi:10.1112/jlms/s2-46.2.336
[12] Schul, R., Subsets of rectifiable curves in Hilbert space—the analyst’s TSP, J. Anal. Math., 103, 331-375 (2007) · Zbl 1152.28006 · doi:10.1007/s11854-008-0011-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.