×

Identifying 1-rectifiable measures in Carnot groups. (English) Zbl 07787444

Summary: We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of analyst’s traveling salesman theorem, which characterizes the subsets of rectifiable curves in \(\mathbb{R}^2\) (P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15), in \(\mathbb{R}^n\) (K. Okikiolu, Characterization of subsets of rectifiable curves in \( \mathbf{R}^n\), J. London Math. Soc. (2) 46 (1992), no. 2, 336-348), or in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called Jones’ \(\beta\)-numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in \(\mathbb{R}^n\) that charges a rectifiable curve in an arbitrary complete, doubling, locally quasiconvex metric space.

MSC:

28A75 Length, area, volume, other geometric measure theory
43A85 Harmonic analysis on homogeneous spaces
53A04 Curves in Euclidean and related spaces
53C17 Sub-Riemannian geometry

References:

[1] G. Alberti and M. Ottolini, On the structure of continua with finite length and Golllabas semicontinuity theorem, Nonlinear Anal. 153 (2017), 35-55. · Zbl 1359.28001
[2] N. Alon and J. H. Spencer, The probabilistic method, Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2016. · Zbl 1333.05001
[3] G. Antonelli and A. Merlo, On rectifiable measures in Carnot groups: existence of density, J. Geom. Anal. 32 (2022), no. 9, Paper No. 239, 67. · Zbl 1502.53042
[4] G. Antonelli and A. Merlo, On rectifiable measures in Carnot groups: Marstrand-Mattila rectifiability criterion, J. Funct. Anal. 283 (2022), no. 1, Paper No. 109495, 62. · Zbl 1494.53035
[5] G. Antonelli and A. Merlo, On rectifiable measures in Carnot groups: representation, Calc. Var. Partial Differential Equations 61 (2022), no. 1, Paper No. 7, 52. · Zbl 1487.53055
[6] J. Azzam and M. Mourgoglou, A characterization of 1-rectifiable doubling measures with connected supports, Anal. PDE 9 (2016), no. 1, 99-109. · Zbl 1332.28007
[7] J. Azzam and R. Schul, An analyst’s traveling salesman theorem for sets of dimension larger than one, Math. Ann. 370 (2018), no. 3-4, 1389-1476. · Zbl 1388.28005
[8] M. Badger, Generalized rectifiability of measures and the identification problem, Complex Anal. Synerg. 5 (2019), no. 1, Paper No. 2, 17. · Zbl 1464.28003
[9] M. Badger and S. McCurdy, Subsets of rectifiable curves in Banach spaces I: Sharp exponents in traveling salesman theorems, Illinois J. Math. 67 (2023), no. 2, 203-274. · Zbl 07724273
[10] M. Badger and S. McCurdy, Subsets of rectifiable curves in Banach spaces II: Universal estimates for almost flat arcs, Illinois J. Math. 67 (2023), no. 2, 275-331. · Zbl 07724274
[11] M. Badger and L. Naples, Radon measures and Lipschitz graphs, Bull. Lond. Math. Soc. 53 (2021), no. 3, 921-936. · Zbl 1476.28002
[12] M. Badger, L. Naples, and V. Vellis, Hölder curves and parameterizations in the analyst’s traveling Salesman theorem, Adv. Math. 349 (2019), 564-647. · Zbl 1411.28001
[13] M. Badger and R. Schul, Multiscale analysis of 1-rectifiable measures: Necessary conditions, Math. Ann. 361 (2015), no. 3-4, 1055-1072. · Zbl 1314.28003
[14] M. Badger and R. Schul, Two sufficient conditions for rectifiable measures, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2445-2454. · Zbl 1345.28004
[15] M. Badger and R. Schul, Multiscale analysis of 1-rectifiable measures II: Characterizations, Anal. Geom. Metr. Spaces 5 (2017), no. 1, 1-39. · Zbl 1360.28004
[16] M. Badger and V. Vellis, Geometry of measures in real dimensions via Hölder parameterizations, J. Geom. Anal. 29 (2019), no. 2, 1153-1192. · Zbl 1481.28006
[17] Z. M. Balogh and R. Züst, Box-counting by Hölder’s traveling salesman, Arch. Math. (Basel) 114 (2020), no. 5, 561-572. · Zbl 1439.28007
[18] D. Bate, Purely unrectifiable metric spaces and perturbations of Lipschitz functions, Acta Math. 224 (2020), no. 1, 1-65. · Zbl 1440.28004
[19] D. Bate, Characterising rectifiable metric spaces using tangent spaces, Invent. Math. 230 (2022), no. 3, 995-1070. · Zbl 1503.30134
[20] D. Bate and S. Li, Characterizations of rectifiable metric measure spaces, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 1, 1-37. · Zbl 1369.28002
[21] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. · Zbl 1128.43001
[22] V. Chousionis, S. Li, and R. Young, The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups, J. Reine Angew. Math. 784 (2022), 251-274. · Zbl 1498.43005
[23] V. Chousionis, S. Li, and S. Zimmerman, The traveling salesman theorem in Carnot groups, Calc. Var. Partial Differential Equations 58 (2019), no. 1, Paper No. 14, 35. · Zbl 1405.28003
[24] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601-628. · Zbl 0758.42009
[25] M. Csörnyei, A. Käenmäki, T. Rajala, and V. Suomala, Upper conical density results for general measures on Rn, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 2, 311-331. · Zbl 1200.28009
[26] C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995), no. 4, 676-694. · Zbl 0844.28002
[27] G. David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), no. 1, 73-114. · Zbl 0696.42011
[28] G. C. David and R. Schul, A sharp necessary condition for rectifiable curves in metric spaces, Rev. Mat. Iberoam. 37 (2021), no. 3, 1007-1044. · Zbl 1467.28002
[29] C. De Lellis, Rectifiable sets, densities and tangent measures, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. · Zbl 1183.28006
[30] N. Edelen, A. Naber, and D. Valtorta, Effective Reifenberg theorems in Hilbert and Banach spaces, Math. Ann. 374 (2019), no. 3-4, 1139-1218. · Zbl 1420.42017
[31] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[32] F. Ferrari, B. Franchi, and H. Pajot, The geometric traveling salesman problem in the Heisenberg group, Rev. Mat. Iberoam. 23 (2007), no. 2, 437-480. · Zbl 1142.28004
[33] J. Garnett, R. Killip, and R. Schul, A doubling measure on Rd can charge a rectifiable curve, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1673-1679. · Zbl 1196.28007
[34] I. Hahlomaa, Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), no. 2, 143-169. · Zbl 1077.54016
[35] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), no. 3, 231-236. · Zbl 0723.22007
[36] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. · Zbl 0985.46008
[37] M. Hyde, The restricted content and the d-dimensional analyst’s travelling Salesman theorem for general sets, Adv. Math. 397 (2022), 108189. · Zbl 1503.28006
[38] T. Hytönen and A. Kairema, What is a cube?, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 405-412. · Zbl 1288.30066
[39] P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15. · Zbl 0731.30018
[40] N. Juillet, A counterexample for the geometric traveling salesman problem in the Heisenberg group, Rev. Mat. Iberoam. 26 (2010), no. 3, 1035-1056. · Zbl 1206.28003
[41] A. Käenmäki, T. Rajala, and V. Suomala, Existence of doubling measures via generalised nested cubes, Proc. Amer. Math. Soc. 140 (2012), no. 9, 3275-3281. · Zbl 1277.28017
[42] J. Krandel, The Traveling Salesman Theorem for Jordan curves in Hilbert Spaces, 2022, Preprint, arXiv:2107.07017v3.
[43] D. G. Larman, A new theory of dimension, Proc. London Math. Soc. 17 (1967), no. 3, 178-192. · Zbl 0152.24502
[44] G. Lerman, Quantifying curvelike structures of measures by using L2 Jones quantities, Comm. Pure Appl. Math. 56 (2003), no. 9, 1294-1365. · Zbl 1076.28005
[45] S. Li, Stratified β-numbers and traveling salesman in Carnot groups, J. London Math. Soc. 106, (2022), 662-703, , arXiv:1902.03268v2. · Zbl 1538.28012 · doi:10.1112/jlms.12582
[46] S. Li and R. Schul, The traveling salesman problem in the Heisenberg group: upper bounding curvature, Trans. Amer. Math. Soc. 368 (2016), no. 7, 4585-4620. · Zbl 1350.53044
[47] S. Li and R. Schul, An upper bound for the length of a traveling salesman path in the Heisenberg group, Rev. Mat. Iberoam. 32 (2016), no. 2, 391-417. · Zbl 1355.28005
[48] H. Martikainen and T. Orponen, Boundedness of the density normalised Jones’ square function does not imply 1-rectifiability, J. Math. Pures Appl. 110 (2018), no. 9, 71-92. · Zbl 1381.28006
[49] M. A. Martín and P. Mattila, k-dimensional regularity classifications for s-fractals, Trans. Amer. Math. Soc. 305 (1988), no. 1, 293-315. · Zbl 0643.28009
[50] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability. · Zbl 0819.28004
[51] P. Mattila, Rectifiability - a survey, London Mathematical Society Lecture Note Series, vol. 483, Cambridge University Press, Cambridge, 2023. · Zbl 1519.28001
[52] P. Mattila, M. Morán, and J.-M. Rey, Dimension of a measure, Studia Math. 142 (2000), no. 3, 219-233. · Zbl 1008.28005
[53] A. P. Morse and J. F. Randolph, The φ rectifiable subsets of the plane, Trans. Amer. Math. Soc. 55 (1944), 236-305. · Zbl 0060.14002
[54] L. Naples, Rectifiability of pointwise doubling measures in Hilbert space, 2020, Preprint, arXiv:2002.07570.
[55] K. Okikiolu, Characterization of subsets of rectifiable curves in Rn, J. London Math. Soc. (2) 46 (1992), no. 2, 336-348. · Zbl 0758.57020
[56] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. (2) 129 (1989), no. 1, 1-60. · Zbl 0678.53042
[57] R. Schul, Subsets of rectifiable curves in Hilbert space - the analyst’s TSP, J. Anal. Math. 103 (2007), 331-375. · Zbl 1152.28006
[58] M. Villa, Higher Dimensional Jordan Curves, 2020, Preprint, arXiv:1908.10289v2.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.