×

Higher-continuity s-version of finite element method with B-Spline functions. (English) Zbl 07811299

Summary: This paper proposes a strategy to solve the problems of the conventional s-version of finite element method (SFEM) fundamentally. Because SFEM can reasonably model an analytical domain by superimposing meshes with different spatial resolutions, it has intrinsic advantages of local high accuracy, low computation time, and simple meshing procedure. However, it has disadvantages such as accuracy of numerical integration and matrix singularity. Although several additional techniques have been proposed to mitigate these limitations, they are computationally expensive or ad-hoc, and detract from the method’s strengths. To solve these issues, we propose a novel strategy called B-spline based SFEM. To improve the accuracy of numerical integration, we employed cubic B-spline basis functions with \(C^2\)-continuity across element boundaries as the global basis functions. To avoid matrix singularity, we applied different basis functions to different meshes. Specifically, we employed the Lagrange basis functions as local basis functions. The numerical results indicate that using the proposed method, numerical integration can be calculated with sufficient accuracy without any additional techniques used in conventional SFEM. Furthermore, the proposed method avoids matrix singularity and is superior to conventional methods in terms of convergence for solving linear equations. Therefore, the proposed method has the potential to reduce computation time while maintaining a comparable accuracy to conventional SFEM.

MSC:

74Sxx Numerical and other methods in solid mechanics
76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Ishihara, D.; Horie, T.; Denda, M., A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. J. Exp. Biol., 1-10 (2009)
[2] Queutey, P.; Visonneau, M., An interface capturing method for free-surface hydrodynamic flows. Comput. Fluids, 1481-1510 (2007) · Zbl 1194.76163
[3] Qian, L.; Causon, D. M.; Mingham, C. G.; Ingram, D. M., A free-surface capturing method for two fluid flows with moving bodies. Proc. R. Soc. A, Math. Phys. Eng. Sci., 21-42 (2006) · Zbl 1149.76642
[4] Hirt, C. W.; Amsden, A. A.; Cook, J., An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys., 227-253 (1974) · Zbl 0292.76018
[5] Tezduyar, T. E., Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech., 1-44 (1991) · Zbl 0747.76069
[6] Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A., Computation of unsteady incompressible flows with the stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations, 7-24
[7] Takizawa, K.; Tezduyar, T. E.; Avsar, R., A low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state. Comput. Mech., 1567-1591 (2020) · Zbl 1464.74369
[8] Tonon, P.; Sanches, R. A.K.; Takizawa, K.; Tezduyar, T. E., A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. Comput. Mech., 413-434 (2021) · Zbl 07360511
[9] Sahin, M.; Mohseni, K., An arbitrary Lagrangian-Eulerian formulation for the numerical simulation of flow patterns generated by the hydromedusa Aequorea victoria. J. Comput. Phys., 4588-4605 (2009) · Zbl 1395.76062
[10] Peskin, C. S., Flow patterns around heart valves: a numerical method. J. Comput. Phys., 252-271 (1972) · Zbl 0244.92002
[11] Wang, X.; Liu, W. K., Extended immersed boundary method using FEM and RKPM. Comput. Methods Appl. Mech. Eng., 1305-1321 (2004) · Zbl 1060.74676
[12] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method. Comput. Methods Appl. Mech. Eng., 2051-2067 (2004) · Zbl 1067.76576
[13] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D.; Périaux, J., A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: application to particulate flow. Int. J. Numer. Methods Fluids, 1043-1066 (1999) · Zbl 0971.76046
[14] Wagner, G.; Moës, N.; Liu, W.; Belytschko, T., The extended finite element method for rigid particles in Stokes flow. Int. J. Numer. Methods Eng., 293-313 (2001) · Zbl 0998.76054
[15] Terada, K.; Asai, M.; Yamagishi, M., Finite cover method for linear and non-linear analyses of heterogeneous solids. Int. J. Numer. Methods Eng., 1321-1346 (2003) · Zbl 1032.74685
[16] Udaykumar, H. S.; Shyy, W.; Rao, M. M., Elafint: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int. J. Numer. Methods Fluids, 691-712 (1996) · Zbl 0887.76059
[17] Dunne, T., An Eulerian approach to fluid-structure interaction and goal-oriented mesh adaptation. Int. J. Numer. Methods Fluids, 1017-1039 (2006) · Zbl 1158.76400
[18] Kan, K.; Yang, Z.; Lyu, P.; Zheng, Y.; Shen, L., Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method. Renew. Energy, 960-971 (2021)
[19] Souza, P. R.C.; Neto, H. R.; Villar, M. M.; Vedovotto, J. M.; Cavalini, A. A.; Neto, A. S., Multi-phase fluid-structure interaction using adaptive mesh refinement and immersed boundary method. J. Braz. Soc. Mech. Sci. Eng., 152 (2022)
[20] Kawakami, K.; Kaneko, S.; Hong, G.; Miyamoto, H.; Yoshimura, S., Fluid-structure interaction analysis of flexible flapping wing in the Martian environment. Acta Astronaut., 138-151 (2022)
[21] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results. J. Comput. Phys., 463-502 (2001) · Zbl 0988.65093
[22] Kim, W.; Choi, H., Immersed boundary methods for fluid-structure interaction: a review. Int. J. Heat Fluid Flow, 301-309 (2019)
[23] Huang, W.-X.; Tian, F.-B., Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 7617-7636 (2019)
[24] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method. J. Comput. Phys., 509-534 (1999) · Zbl 0953.76069
[25] Hartmann, D.; Meinke, M.; Schröder, W., An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids, 1103-1125 (2008) · Zbl 1237.76085
[26] Griffith, B. E., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng., 317-345 (2012) · Zbl 1243.92017
[27] Salih, S. Q.; Aldlemy, M. S.; Rasani, M. R.; Ariffin, A.; Ya, T. M.Y. S.T.; Al-Ansari, N.; Yaseen, Z. M.; Chau, K.-W., Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Eng. Appl. Comput. Fluid Mech., 860-877 (2019)
[28] Borker, R.; Huang, D.; Grimberg, S.; Farhat, C.; Avery, P.; Rabinovitch, J., Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid-structure interaction. Int. J. Numer. Methods Fluids, 389-424 (2019)
[29] Aldlemy, M. S.; Rasani, M. R.; Ariffin, A.; Ya, T. T., Adaptive mesh refinement immersed boundary method for simulations of laminar flows past a moving thin elastic structure. J. Hydrodyn., 148-160 (2020)
[30] Henshaw, W. D.; Schwendeman, D. W., Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement. J. Comput. Phys., 7469-7502 (2008) · Zbl 1213.76138
[31] Massing, A.; Larson, M. G.; Logg, A.; Rognes, M. E., A stabilized Nitsche overlapping mesh method for the Stokes problem. Numer. Math., 73-101 (2014) · Zbl 1426.76289
[32] Bathe, K.-J.; Zhang, L., The finite element method with overlapping elements-a new paradigm for CAD driven simulations. Comput. Struct., 526-539 (2017)
[33] Huang, J.; Bathe, K.-J., On the convergence of overlapping elements and overlapping meshes. Comput. Struct. (2021)
[34] Gerstenberger, A.; Wall, W. A., Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. Int. J. Numer. Methods Fluids, 1227-1248 (2008) · Zbl 1338.74038
[35] Fish, J., The s-version of the finite element method. Comput. Struct., 539-547 (1992) · Zbl 0775.73247
[36] Fish, J.; Markolefas, S., The s-version of the finite element method for multilayer laminates. Int. J. Numer. Methods Eng., 1081-1105 (1992)
[37] Fish, J.; Markolefas, S., Adaptive s-method for linear elastostatics. Comput. Methods Appl. Mech. Eng., 363-396 (1993) · Zbl 0775.73248
[38] Reddy, J., An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos. Struct., 21-35 (1993)
[39] Fish, J.; Markolefas, S.; Guttal, R.; Nayak, P., On adaptive multilevel superposition of finite element meshes for linear elastostatics. Appl. Numer. Math., 135-164 (1994) · Zbl 0801.73068
[40] Angioni, S.; Visrolia, A.; Meo, M., A hierarchical multiple plate models theory for laminated composites including delamination and geometrical nonlinear effects. Compos. Struct., 780-791 (2011)
[41] Angioni, S.; Visrolia, A.; Meo, M., Combining X-FEM and a multilevel mesh superposition method for the analysis of thick composite structures. Composites, Part B, Eng., 559-568 (2012)
[42] Chen, X.; Li, Z.; Wang, H., Progressive failure analysis of an open-hole composite laminate by using the s-version finite-element method. Mech. Compos. Mater., 279-294 (2014)
[43] Jiao, Y.; Fish, J., Adaptive delamination analysis. Int. J. Numer. Methods Eng., 1008-1037 (2015) · Zbl 1352.74023
[44] Jiao, Y.; Fish, J., On the equivalence between the s-method, the XFEM and the ply-by-ply discretization for delamination analyses of laminated composites. Int. J. Fract., 107-129 (2015)
[45] Kumagai, Y.; Onodera, S.; Nagumo, Y.; Okabe, T.; Yoshioka, K., Multiscale modeling of free-surface effect on crack formation in unidirectional off-axis laminates. Composites, Part A, Appl. Sci. Manuf., 136-146 (2017)
[46] Sakata, S.; Chan, Y.; Arai, Y., On accuracy improvement of microscopic stress/stress sensitivity analysis with the mesh superposition method for heterogeneous materials considering geometrical variation of inclusions. Int. J. Numer. Methods Eng., 534-559 (2020) · Zbl 07843209
[47] Okada, H.; Liu, C.; Ninomiya, T.; Fukui, Y.; Kumazawa, N., Analysis of particulate composite materials using an element overlay technique. Comput. Model. Eng. Sci., 333-347 (2004) · Zbl 1075.74079
[48] Okada, H.; Liu, C.; Ninomiya, T.; Fukui, Y.; Kumazawa, N., Applications of element overlay technique to the problems of particulate composite materials. Proc. Int. Conf. Comput. Exp. Eng. Sci., 1515-1520 (2004)
[49] Vorobiov, O.; Tabatabaei, S.; Lomov, S., Mesh superposition applied to meso-FE modelling of fibre-reinforced composites: cross-comparison of implementations. Int. J. Numer. Methods Eng., 1003-1024 (2017) · Zbl 07867084
[50] Sakata, S.-i.; Tanimasu, S., Mesh superposition-based multiscale stress analysis of composites using homogenization theory and re-localization technique considering fiber location variation. Int. J. Numer. Methods Eng., 505-529 (2022) · Zbl 1526.74073
[51] Fish, J.; Wagiman, A., Multiscale finite element method for a locally nonperiodic heterogeneous medium. Comput. Mech., 164-180 (1993) · Zbl 0779.73058
[52] Sun, W.; Fish, J.; Dhia, H. B., A variant of the s-version of the finite element method for concurrent multiscale coupling. Int. J. Multiscale Comput. Eng. (2018)
[53] Cheng, P.; Zhu, H.; Yan, Z.; Shen, Y.; Fish, J., Multiscale modeling for fire induced spalling in concrete tunnel linings based on the superposition-based phase field fracture model. Comput. Geotech. (2022)
[54] Takano, N.; Zako, M.; Okuno, Y., Multi-scale finite element analysis of porous materials and components by asymptotic homogenization theory and enhanced mesh superposition method. Model. Simul. Mater. Sci. Eng., 137 (2003)
[55] Takano, N.; Okuno, Y., Three-scale finite element analysis of heterogeneous media by asymptotic homogenization and mesh superposition methods. Int. J. Solids Struct., 4121-4135 (2004) · Zbl 1079.74653
[56] Kawagai, M.; Sando, A.; Takano, N., Image-based multi-scale modelling strategy for complex and heterogeneous porous microstructures by mesh superposition method. Model. Simul. Mater. Sci. Eng., 53 (2006)
[57] Tsukino, M.; Takano, N.; Michel, A.; Haiat, G., Multiscale stress analysis of trabecular bone around acetabular cup implant by finite element mesh superposition method. Mech. Eng. Lett., 15-00354 (2015)
[58] Yue, Z.; Robbins, D., Adaptive superposition of finite element meshes in elastodynamic problems. Int. J. Numer. Methods Eng., 1604-1635 (2005) · Zbl 1156.74388
[59] Yue, Z.; Robbins, D., Adaptive superposition of finite element meshes in non-linear transient solid mechanics problems. Int. J. Numer. Methods Eng., 1063-1094 (2007) · Zbl 1194.74485
[60] Wang, S.; Wang, M. Y., A moving superimposed finite element method for structural topology optimization. Int. J. Numer. Methods Eng., 1892-1922 (2006) · Zbl 1174.74007
[61] Fish, J.; Nath, A., Adaptive and hierarchical modelling of fatigue crack propagation. Int. J. Numer. Methods Eng., 2825-2836 (1993) · Zbl 0780.73076
[62] Lee, S.-H.; Song, J.-H.; Yoon, Y.-C.; Zi, G.; Belytschko, T., Combined extended and superimposed finite element method for cracks. Int. J. Numer. Methods Eng., 1119-1136 (2004) · Zbl 1041.74542
[63] Okada, H.; Endoh, S.; Kikuchi, M., On fracture analysis using an element overlay technique. Eng. Fract. Mech., 773-789 (2005)
[64] Okada, H.; Endoh, S.; Kikuchi, M., Application of s-version finite element method to two-dimensional fracture mechanics problems. J. Solid Mech. Mater. Eng., 699-710 (2007)
[65] Fan, R.; Fish, J., The RS-method for material failure simulations. Int. J. Numer. Methods Eng., 1607-1623 (2008) · Zbl 1159.74039
[66] Nakasumi, S.; Suzuki, K.; Ohtsubo, H., Crack growth analysis using mesh superposition technique and X-FEM. Int. J. Numer. Methods Eng., 291-304 (2008) · Zbl 1195.74190
[67] Kikuchi, M.; Wada, Y.; Shimizu, Y.; Li, Y., Crack growth analysis in a weld-heat-affected zone using S-version FEM. Int. J. Press. Vessels Piping, 2-8 (2012)
[68] Kikuchi, M.; Wada, Y.; Shintaku, Y.; Suga, K.; Li, Y., Fatigue crack growth simulation in heterogeneous material using S-version FEM. Int. J. Fatigue, 47-55 (2014)
[69] Wada, Y.; Kikuchi, M.; Yamada, S.; Serizawa, R.; Li, Y., Fatigue growth of internal flaw: simulation of subsurface crack penetration to the surface of the structure. Eng. Fract. Mech., 100-115 (2014)
[70] Kikuchi, M.; Wada, Y.; Li, Y., Crack growth simulation in heterogeneous material by S-FEM and comparison with experiments. Eng. Fract. Mech., 239-247 (2016)
[71] Xu, Q.; Chen, J.; Yue, H.; Li, J., A study on the S-version FEM for a dynamic damage model. Int. J. Numer. Methods Eng., 427-444 (2018) · Zbl 1540.74119
[72] Kishi, K.; Takeoka, Y.; Fukui, T.; Matsumoto, T.; Suzuki, K.; Shibanuma, K., Dynamic crack propagation analysis based on the s-version of the finite element method. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1442.74209
[73] He, T.; Mitsume, N.; Yasui, F.; Morita, N.; Fukui, T.; Shibanuma, K., Strategy for accurately and efficiently modelling an internal traction-free boundary based on the s-version finite element method: problem clarification and solutions verification. Comput. Methods Appl. Mech. Eng. (2023) · Zbl 07644884
[74] Cheng, P.; Zhuang, X.; Zhu, H.; Fish, J., Application of s-version finite element method to phase field modeling for localized fractures. Comput. Geotech. (2023)
[75] Sun, W.; Fish, J., Superposition-based coupling of peridynamics and finite element method. Comput. Mech., 231-248 (2019) · Zbl 1469.74107
[76] Sun, W.; Fish, J.; Lin, P., Numerical simulation of fluid-driven fracturing in orthotropic poroelastic media based on a peridynamics-finite element coupling approach. Int. J. Rock Mech. Min. Sci. (2022)
[77] Sun, W.; Fish, J.; Guo, C., Parallel PD-FEM simulation of dynamic fluid-driven fracture branching in saturated porous media. Eng. Fract. Mech. (2022)
[78] Sun, W.; Fish, J.; Liu, F.; Lu, Y., A stabilized two-phase PD-FEM coupling approach for modeling partially saturated porous media. Acta Geotech., 589-607 (2023)
[79] Ooya, T.; Tanaka, S.; Okada, H., On the linear dependencies of interpolation functions in s-version finite element method. J. Comput. Sci. Technol., 124-135 (2009)
[80] Park, J. W.; Hwang, J. W.; Kim, Y. H., Efficient finite element analysis using mesh superposition technique. Finite Elem. Anal. Des., 619-638 (2003)
[81] Sawada, T.; Tezuka, A., High-order gaussian quadrature in X-FEM with the Lagrange-multiplier for fluid-structure coupling. Int. J. Numer. Methods Fluids, 1219-1239 (2010) · Zbl 1427.76145
[82] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method. Comput. Fluids, 189-200 (2017) · Zbl 1390.76345
[83] Roache, P. J., Verification and Validation in Computational Science and Engineering, vol. 895 (1998), Hermosa: Hermosa Albuquerque, NM
[84] Higham, N. J., Cholesky factorization. Wiley Interdiscip. Rev.: Comput. Stat., 251-254 (2009)
[85] Zhan, X., Computing the extremal positive definite solutions of a matrix equation. SIAM J. Sci. Comput., 1167-1174 (1996) · Zbl 0856.65044
[86] Morita, N., Monolithic non-overlapping/overlapping DDM based linear equation solver (2022)
[87] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 409-436 (1952) · Zbl 0048.09901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.