×

A numerical comparison of different qualitative algorithms for solving 2D inverse elastic scattering problems. (English) Zbl 1476.65353

Summary: In this paper, we numerically compare several well-established and recent qualitative algorithms for the shape reconstruction of obstacles in elastic scattering based on the measured noisy full far-field data. The compared algorithms include linear sampling method, factorization method and its variant (i.e., \(F_\sharp\) method), direct sampling method, and direct factorization method. To regularize the ill-conditioned far-field integral operator used in linear sampling method and factorization method, the Tikhonov regularization is used, where we compared two different regularization parameter choice technique: the generalized discrepancy principle (GDP) and the improved maximum product criterion (IMPC). The GDP requires a priori knowledge of the noise level in the far-field data, while the IMPC does not have such an impractical requirement. Extensive numerical examples are provided to illustrate the difference, similarity, advantage, and disadvantage of the tested qualitative methods under various settings. The direct sampling method and direct factorization method outperform the others in computational efficiency while achieving comparable reconstruction accuracy. We find the \(F_\sharp\) method is numerically less sensitive to noise.

MSC:

65R32 Numerical methods for inverse problems for integral equations
35P25 Scattering theory for PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Alves, CJS, On the far-field operator in elastic obstacle scattering, IMA J Appl Math, 67, 1, 1-21 (2002) · Zbl 1141.35429
[2] Arens, T., Linear sampling methods for 2D inverse elastic wave scattering, Inverse Probl, 17, 5, 1445-1464 (2001) · Zbl 0985.35105
[3] Athanasiadis, C.; Sevroglou, V.; Stratis, I., Scattering relations for point-generated dyadic fields in two-dimensional linear elasticity, Q Appl Math, 64, 4, 695-710 (2006) · Zbl 1126.74022
[4] Bao, G.; Yin, T., Recent progress on the study of direct and inverse elastic scattering problems, Sci Sin Math, 47, 10, 1103-1118 (2017) · Zbl 1499.74059
[5] Bao, G.; Li, P.; Lin, J.; Triki, F., Inverse scattering problems with multi-frequencies, Inverse Probl, 31, 9, 093001 (2015) · Zbl 1332.78019
[6] Bao, G.; Hu, G.; Sun, J.; Yin, T., Direct and inverse elastic scattering from anisotropic media, Journal de Mathématiques Pures et Appliquées, 117, 263-301 (2018) · Zbl 1397.35094
[7] Bazán, FSV, Simple and efficient determination of the Tikhonov regularization parameter chosen by the generalized discrepancy principle for discrete ill-posed problems, J Sci Comput, 63, 1, 163-184 (2014) · Zbl 1323.65038
[8] Bazán, FSV; Francisco, JB; Leem, KH; Pelekanos, G., A maximum product criterion as a Tikhonov parameter choice rule for Kirsch‘s factorization method, J Comput Appl Math, 236, 17, 4264-4275 (2012) · Zbl 1253.65178
[9] Bazán, FSV; Francisco, JB; Leem, KH; Pelekanos, G., Using the linear sampling method and an improved maximum product criterion for the solution of the electromagnetic inverse medium problem, J Comput Appl Math, 273, 61-75 (2015) · Zbl 1310.78019
[10] Bazán, FSV; Kleefeld, A.; Leem, KH; Pelekanos, G., Sampling method based projection approach for the reconstruction of 3D acoustically penetrable scatterers, Linear Algebra Appl, 495, 289-323 (2016) · Zbl 1333.65124
[11] Bazán, FSV; Francisco, JB; Leem, KH; Pelekanos, G.; Sevroglou, V., A numerical reconstruction method in inverse elastic scattering, Inverse Probl Sci Eng, 25, 11, 1577-1600 (2017) · Zbl 1390.74030
[12] Charalambopoulos, A.; Kirsch, A.; Anagnostopoulos, KA; Gintides, D.; Kiriaki, K., The factorization method in inverse elastic scattering from penetrable bodies, Inverse Probl, 23, 1, 27-51 (2006) · Zbl 1111.74024
[13] Colton, D.; Kirsch, A., A simple method for solving inverse scattering problems in the resonance region, Inverse Probl, 12, 4, 383-393 (1996) · Zbl 0859.35133
[14] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (2012), New York: Springer, New York · Zbl 1425.35001
[15] Colton, D.; Piana, M.; Potthast, R., A simple method using Morozov‘s discrepancy principle for solving inverse scattering problems, Inverse Probl, 13, 6, 1477 (1997) · Zbl 0902.35123
[16] Colton, D.; Giebermann, K.; Monk, P., A regularized sampling method for solving three-dimensional inverse scattering problems, SIAM J Sci Comput, 21, 6, 2316-2330 (2000) · Zbl 0961.35172
[17] Colton, D.; Coyle, J.; Monk, P., Recent developments in inverse acoustic scattering theory, SIAM Rev, 42, 3, 369-414 (2000) · Zbl 0960.76081
[18] Deadman E, Higham NJ, Ralha R (2012) Blocked Schur algorithms for computing the matrix square root. In: Manninen P, Öster P (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Spring, Berlin, Heidelberg. pp 171-182
[19] Dennison, M.; Devaney, A., Inverse scattering in inhomogeneous background media: II. Multi-frequency case and SVD formulation, Inverse Probl, 20, 4, 1307 (2004) · Zbl 1059.65099
[20] Dong, H.; Lai, J.; Li, P., Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J Imaging Sci, 12, 2, 809-838 (2019) · Zbl 1524.78044
[21] Edelman, A., Eigenvalues and condition numbers of random matrices, SIAM J Matrix Anal Appl, 9, 4, 543-560 (1988) · Zbl 0678.15019
[22] Elschner, J.; Yamamoto, M., Uniqueness in inverse elastic scattering with finitely many incident waves, Inverse Probl, 26, 4, 045005 (2010) · Zbl 1189.35374
[23] Engl, HW, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J Optim Theory Appl, 52, 2, 209-215 (1987) · Zbl 0586.65045
[24] Giorgi, G.; Brignone, M.; Aramini, R.; Piana, M., Application of the inhomogeneous Lippmann-Schwinger equation to inverse scattering problems, SIAM J Appl Math, 73, 1, 212-231 (2013) · Zbl 1281.78012
[25] Goncharskii, A.; Leonov, AS; Yagola, AG, A generalized discrepancy principle, USSR Comput Math Math Phys, 13, 2, 25-37 (1973) · Zbl 0276.65046
[26] Grinberg, NI; Kirsch, A., The factorization method for obstacles with a-priori separated sound-soft and sound-hard parts, Math Comput Simul, 66, 4-5, 267-279 (2004) · Zbl 1054.65111
[27] Hahner, P.; Hsiao, GC, Uniqueness theorems in inverse obstacle scattering of elastic waves, Inverse Probl, 9, 5, 525 (1993) · Zbl 0789.35172
[28] Hu, G.; Kirsch, A.; Sini, M., Some inverse problems arising from elastic scattering by rigid obstacles, Inverse Probl, 29, 1, 015009 (2012) · Zbl 1334.74047
[29] Ikehata, M.; Niemi, E.; Siltanen, S., Inverse obstacle scattering with limited-aperture data, Inverse Probl Imaging, 6, 1, 77-94 (2012) · Zbl 1241.65094
[30] Jaccard, P., Nouvelles recherches sur la distribution florale, Bulletin de la Societe Vaudoise des Sciences Naturelles, 44, 223-70 (1908)
[31] Ji, X.; Liu, X., Inverse elastic scattering problems with phaseless far field data, Inverse Probl, 35, 11, 114004 (2019) · Zbl 1423.35449
[32] Ji, X.; Liu, X.; Xi, Y., Direct sampling methods for inverse elastic scattering problems, Inverse Probl, 34, 3, 035008 (2018) · Zbl 1516.35516
[33] Ji, X.; Liu, X.; Zhang, B., Target reconstruction with a reference point scatterer using phaseless far field patterns, SIAM J Imaging Sci, 12, 1, 372-391 (2019) · Zbl 1423.35286
[34] Kirsch, A., Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Probl, 14, 6, 1489-1512 (1998) · Zbl 0919.35147
[35] Kirsch, A.; Grinberg, N., The Factorization Method for Inverse Problems (2008), New York: Oxford University Press, New York · Zbl 1222.35001
[36] Kupradze, VD, Three-Dimensional Problems of Elasticity and Thermoelasticity (2012), New York: Elsevier, New York
[37] Leem, KH; Liu, J.; Pelekanos, G., Two direct factorization methods for inverse scattering problems, Inverse Probl, 34, 12, 125004 (2018) · Zbl 1437.35705
[38] Leem, KH; Liu, J.; Pelekanos, G., An adaptive quadrature-based factorization method for inverse acoustic scattering problems, Inverse Probl Sci Eng, 27, 3, 299-316 (2018) · Zbl 1477.65180
[39] Leem, KH; Liu, J.; Pelekanos, G., An extended direct factorization method for inverse scattering with limited aperture data, Inverse Probl Sci Eng, 28, 6, 754-776 (2019) · Zbl 1479.65021
[40] Li, P.; Wang, Y.; Wang, Z.; Zhao, Y., Inverse obstacle scattering for elastic waves, Inverse Probl, 32, 11, 115018 (2016) · Zbl 1433.74064
[41] Liu, K., Two effective post-filtering strategies for improving direct sampling methods, Appl Anal, 96, 3, 502-515 (2017) · Zbl 1361.35205
[42] Liu, H.; Liu, X.; Wang, X.; Wang, Y., On a novel inverse scattering scheme using resonant modes with enhanced imaging resolution, Inverse Probl, 35, 12, 125012 (2019) · Zbl 1430.35068
[43] Lu, S.; Pereverzev, S.; Shao, Y.; Tautenhahn, U., On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, J Integral Equ Appl, 22, 3, 483-517 (2010) · Zbl 1206.47015
[44] Murch, RD; Tan, DGH; Wall, DJN, Newton-Kantorovich method applied to two-dimensional inverse scattering for an exterior Helmholtz problem, Inverse Probl, 4, 4, 1117-1128 (1988) · Zbl 0659.65127
[45] Pelekanos, G.; Sevroglou, V., Inverse scattering by penetrable objects in two-dimensional elastodynamics, J Comput Appl Math, 151, 1, 129-140 (2003) · Zbl 1044.74023
[46] Pelekanos, G.; Sevroglou, V., The \(({F^*F})^{1/4}\)-method for the transmission problem in two-dimensional linear elasticity, Appl Anal, 84, 3, 311-328 (2005) · Zbl 1101.74038
[47] Potthast, R., Sampling and probe methods—an algorithmical view, Computing, 75, 2-3, 215-235 (2005) · Zbl 1075.35110
[48] Potthast, R., A survey on sampling and probe methods for inverse problems, Inverse Probl, 22, 2, 1-47 (2006) · Zbl 1094.35144
[49] Roger, A., Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem, IEEE Trans Antennas Propag, 29, 2, 232-238 (1981) · Zbl 0947.65503
[50] Sankar, A.; Spielman, DA; Teng, S-H, Smoothed analysis of the condition numbers and growth factors of matrices, SIAM J Matrix Anal Appl, 28, 2, 446-476 (2006) · Zbl 1179.65033
[51] Sevroglou, V., The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering, Inverse Probl, 21, 2, 717 (2005) · Zbl 1070.35131
[52] Sevroglou, V.; Pelekanos, G., An inversion algorithm in two-dimensional elasticity, J Math Anal Appl, 263, 1, 277-293 (2001) · Zbl 1046.74022
[53] Sevroglou, V.; Pelekanos, G., Two-dimensional elastic Herglotz functions and their applications in inverse scattering, J Elast, 68, 1-3, 123-144 (2002) · Zbl 1050.74007
[54] Tikhonov, AN; Goncharsky, A.; Stepanov, V.; Yagola, AG, Numerical methods for the solution of ill-posed problems (2013), Berlin: Springer, Berlin · Zbl 0831.65059
[55] Yaman, F.; Yakhno, VG; Potthast, R., A survey on inverse problems for applied sciences, Math Probl Eng, 2013, 1-19 (2013) · Zbl 1299.35321
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.