×

Direct and inverse elastic scattering from anisotropic media. (English. French summary) Zbl 1397.35094

Summary: Assume that a time-harmonic elastic wave is incident onto a penetrable anisotropic elastic body embedded in a homogeneous isotropic background medium. The scattering problem is reduced to a truncated domain. Uniqueness and existence of weak solutions are proved by applying the Fredholm alternative and using properties of the Dirichlet-to-Neumann map in both two and three dimensions. The Fréchet derivative of the near-field solution operator with respect to the boundary of the scatterer is derived. As an application, a descent algorithm is designed for recovering the interface from the near-field data of one or several incident directions and frequencies. Numerical examples in 2D are presented to show the validity and accuracy of the algorithm.

MSC:

35J60 Nonlinear elliptic equations
35J47 Second-order elliptic systems
65K10 Numerical optimization and variational techniques
74J20 Wave scattering in solid mechanics

Software:

DLMF

References:

[1] Ciarlet, P. G., Mathematical elasticity. vol. I. three-dimensional elasticity, (1988), North-Holland Publishing Co. Amsterdam · Zbl 0648.73014
[2] Bramble, J. H.; Pasciak, J. E.; Trenev, D., Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math. Comput., 79, 2079-2101, (2010) · Zbl 1273.74155
[3] Cheng, Z.; Xiang, X.; Zhang, X., Convergence of the PML method for elastic wave scattering problems, Math. Comput., 85, 2687-2714, (2016) · Zbl 1344.65104
[4] Alpert, B.; Greengard, L.; Hagstrom, T., Nonreflecting boundary conditions for the time-dependent wave equation, J. Comput. Phys., 180, 270-296, (2002) · Zbl 1002.65096
[5] Bonnet, M.; Constantinescu, A., Inverse problems in elasticity, Inverse Probl., 21, R1-R50, (2005) · Zbl 1070.35118
[6] Gächter, G. K.; Grote, M. J., Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, 37, 293-311, (2003) · Zbl 1163.74351
[7] Givoli, D.; Keller, J. B., Non-reflecting boundary conditions for elastic waves, Wave Motion, 12, 261-279, (1990) · Zbl 0708.73012
[8] Grote, M. J.; Keller, J. B., On nonreflecting boundary conditions, J. Comput. Phys., 122, 231-243, (1995) · Zbl 0841.65099
[9] Olver, F.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST handbook of mathematical functions, (2010), Cambridge University Press New York · Zbl 1198.00002
[10] Harari, I.; Shohet, Z., On non-reflecting boundary conditions in unbounded elastic solids, Comput. Methods Appl. Mech. Eng., 163, 123-139, (1998) · Zbl 0971.74080
[11] Chandler-Wilde, S. N.; Monk, P., Wave-number-explicit bounds in time-harmonic scattering, SIAM J. Math. Anal., 39, 1428-1455, (2008) · Zbl 1154.35022
[12] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory, (1998), Springer Berlin · Zbl 0893.35138
[13] Nédélec, J. C., Acoustic and electromagnetic equations: integral representations for harmonic problems, (2001), Springer-Verlag New York · Zbl 0981.35002
[14] Bramble, J. H.; Pasciak, J. E., A note on the existence and uniqueness of solutions of frequency domain elastic wave problems: a priori estimates in \(h^1\), J. Math. Anal. Appl., 345, 396-404, (2008) · Zbl 1146.35323
[15] Li, P.; Wang, Y.; Wang, Z.; Zhao, Y., Inverse obstacle scattering for elastic waves, Inverse Probl., 32, (2016) · Zbl 1433.74064
[16] Elschner, J.; Hu, G., Scattering of plane elastic waves by three-dimensional diffraction gratings, Math. Models Methods Appl. Sci., 22, (2012) · Zbl 1320.74062
[17] P. Hähner, On Acoustic, Electromagnetic, and Elastic Scattering Problems in Inhomogeneous Media, Habilitationsschrift Göttingen.; P. Hähner, On Acoustic, Electromagnetic, and Elastic Scattering Problems in Inhomogeneous Media, Habilitationsschrift Göttingen.
[18] Elschner, J.; Hu, G., Elastic scattering by unbounded rough surfaces, SIAM J. Math. Anal., 6, 4101-4127, (2012) · Zbl 1335.74029
[19] Hu, G.; Liu, H., Nearly cloaking the elastic wave fields, J. Math. Pures Appl., 104, 1045-1074, (2015) · Zbl 1327.74026
[20] Hettlich, F., Fréchet derivative in inverse obstacle scattering, Inverse Probl., 11, 371-382, (1995) · Zbl 0821.35147
[21] Kirsch, A., The domain derivative and two applications in inverse scattering theory, Inverse Probl., 9, 81-96, (1993) · Zbl 0773.35085
[22] Potthast, R., Domain derivatives in electromagnetic scattering, Math. Methods Appl. Sci., 19, 1157-1175, (1996) · Zbl 0866.35019
[23] Charalambopoulos, A., On the Fréchet differentiability of boundary integral operators in the inverse elastic scattering problem, Inverse Probl., 11, 1137-1161, (1995) · Zbl 0847.35144
[24] Loüer, F. L., On the Fréchet derivative in elastic obstacle scattering, SIAM J. Appl. Math., 72, 1493-1507, (2012) · Zbl 1259.35154
[25] Ammari, H.; Garnier, J.; Kang, H.; Lim, M.; Solna, K., Multistatic imaging of extended targets, SIAM J. Imaging Sci., 5, 564-600, (2012) · Zbl 1344.78023
[26] Ammari, H.; Bretin, E.; Garnier, J.; Kang, H.; Lee, H.; Wahab, A., Mathematical methods in elasticity imaging, (2015), Princeton University Press · Zbl 1332.35002
[27] Bao, G.; Li, P.; Lin, J.; Triki, F., Inverse scattering problems with multi-frequencies, Inverse Probl., 31, (2015) · Zbl 1332.78019
[28] Bao, G.; Lin, J.; Triki, F., A multi-frequency inverse source problem, J. Differ. Equ., 249, 3443-3465, (2010) · Zbl 1205.35336
[29] Bao, G.; Yin, T., Recent progress on the study of direct and inverse elastic scattering problems, Sci. Sin., Math., 47, 1-16, (2017), (in chinese)
[30] Zhang, R.; Sun, J., The reconstruction of obstacles in a waveguide using finite elements, J. Comput. Math., 36, 29-46, (2018) · Zbl 1413.78006
[31] Zhang, R.; Sun, J., An efficient finite element method for grating profile reconstruction, J. Comput. Phys., 302, 405-419, (2015) · Zbl 1349.65594
[32] Ammari, H.; Calmon, P.; Iakovleva, E., Direct elastic imaging of a small inclusion, SIAM J. Imaging Sci., 1, 169-187, (2008) · Zbl 1179.35341
[33] Ammari, H.; Kang, H., Reconstruction of small inhomogeneities from boundary measurements, Lecture Notes in Mathematics, vol. 1846, (2004), Springer-Verlag Berlin · Zbl 1113.35148
[34] Gridin, D., Far-field asymptotics of the Green’s tensor for a transversely isotropic solid, Proc. R. Soc. Lond. A, 456, 571-591, (2000) · Zbl 0991.74042
[35] Kupradze, V. D.; Gegelia, T. G.; Basheleishvili, M. O.; Burchuladze, T. V., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, (1979), North-Holland Amsterdam · Zbl 0406.73001
[36] Tong, M. S.; Chew, W. C., Nyström method for elastic wave scattering by three-dimensional obstacles, J. Comput. Phys., 226, 1845-1858, (2007) · Zbl 1219.74046
[37] Pike, E. R.; Sabatier, P. C., Scattering and inverse scattering in pure and applied science, (2002), Academic Press San Diego · Zbl 1012.00006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.