×

Gradient Ricci solitons with a conformal vector field. (English) Zbl 1397.53060

Summary: We show that a connected gradient Ricci soliton \((M,g,f,\lambda )\) with constant scalar curvature and admitting a non-homothetic conformal vector field \(V\) leaving the potential vector field invariant, is Einstein and the potential function \(f\) is constant. For locally conformally flat case and non-homothetic \(V\) we show without constant scalar curvature assumption, that \(f\) is constant and \(g\) has constant curvature.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)

References:

[1] Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Geometric Aspects, Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007) · Zbl 1157.53034
[2] Brozos-Vázquez, M; García-Río, E; Gavino-Fernández, S, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom. Anal., 23, 1196-1212, (2013) · Zbl 1285.53059 · doi:10.1007/s12220-011-9283-z
[3] Fernández-López, M; García-Río, E, A note on locally conformally flat gradient Ricci solitons, Geom. Dedicata, 168, 1-7, (2014) · Zbl 1284.53046 · doi:10.1007/s10711-012-9815-0
[4] Fernández-López, M; García-Río, E, On gradient Ricci solitons with constant scalar curvature, Proc. Am. Math. Soc., 144, 369-378, (2016) · Zbl 1327.53057 · doi:10.1090/proc/12693
[5] Jauregui, JL; Wylie, William, Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds, J. Geom. Anal., 25, 668-708, (2015) · Zbl 1312.53066 · doi:10.1007/s12220-013-9442-5
[6] Kanai, M, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math., 6, 143-151, (1983) · Zbl 0534.53037 · doi:10.3836/tjm/1270214332
[7] Kühnel, W; Rademacher, H-B, Conformal vector fields on pseudo-Riemannian spaces, Differ. Geom. Appl., 7, 237-250, (1997) · Zbl 0901.53048 · doi:10.1016/S0926-2245(96)00052-6
[8] Okumura, M, Complete Riemannian manifolds and some vector fields, Trans. Am. Math. Soc., 117, 251-275, (1965) · Zbl 0136.17701 · doi:10.1090/S0002-9947-1965-0174022-6
[9] Perelman, G.: The Entropy Formula for the Ricci Flow and Its Geometric Applications. Preprint. arXiv:0211.1159 · Zbl 1327.53057
[10] Petersen, P; Wylie, W, On the classification of gradient Ricci solitons, Geom. Topol., 14, 2277-2300, (2010) · Zbl 1202.53049 · doi:10.2140/gt.2010.14.2277
[11] Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970) · Zbl 0213.23801
[12] Yano, K; Nagano, T, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. Math. (2), 69, 451-461, (1959) · Zbl 0088.14204 · doi:10.2307/1970193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.