×

Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-Einstein manifolds. (English) Zbl 1312.53066

Summary: In this paper we extend some well-known rigidity results for conformal changes of Einstein metrics to the class of generalized quasi-Einstein (GQE) metrics, which includes gradient Ricci solitons. In order to do so, we introduce the notions of conformal diffeomorphisms and vector fields that preserve a GQE structure. We show that a complete GQE metric admits a structure-preserving, non-homothetic complete conformal vector field if and only if it is a round sphere. We also classify the structure-preserving conformal diffeomorphisms. In the compact case, if a GQE metric admits a structure-preserving, non-homothetic conformal diffeomorphism, then the metric is conformal to the sphere, and isometric to the sphere in the case of a gradient Ricci soliton. In the complete case, the only structure-preserving non-homothetic conformal diffeomorphisms from a shrinking or steady gradient Ricci soliton to another soliton are the conformal transformations of spheres and inverse stereographic projection.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

References:

[1] Böhm, C.: Inhomogeneous Einstein metrics on low-dimensional spheres and other low-dimensional spaces. Invent. Math. 134(1), 145-176 (1998) · Zbl 0965.53033
[2] Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94(1), 119-145 (1925) · JFM 51.0568.03 · doi:10.1007/BF01208647
[3] Bryant, R.: Ricci flow solitons in dimension three with SO(3)-symmetries. http://www.math.duke.edu/ bryant/3DRotSymRicciSolitons.pdf · Zbl 0115.39302
[4] Cao, H.-D., Chen, Q.: On locally conformally flat gradient steady Ricci solitons. Trans. Am. Math. Soc. 364(5), 2377-2391 (2012) · Zbl 1245.53038 · doi:10.1090/S0002-9947-2011-05446-2
[5] Case, J.S.: The nonexistence of quasi-Einstein metrics. Pac. J. Math. 248(2), 277-284 (2010) · Zbl 1204.53032 · doi:10.2140/pjm.2010.248.277
[6] Case, J., Shu, Y.-J., Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl. 29(1), 93-100 (2011) · Zbl 1215.53033
[7] Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271(3-4), 751-756 (2012) · Zbl 1246.53040 · doi:10.1007/s00209-011-0888-5
[8] Chaki, M.C.: On generalized quasi Einstein manifolds. Publ. Math. (Debr.) 58(4), 683-691 (2001) · Zbl 1062.53035
[9] Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189-237 (1996) · Zbl 0865.53037 · doi:10.2307/2118589
[10] Chen, B.-L.: Strong uniqueness of the Ricci flow. J. Differ. Geom. 82(2), 363-382 (2009) · Zbl 1177.53036
[11] Chow, B., Chu, S.-C., Glickenstein, D., Guenther, C., Isenberg, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I. Mathematical Surveys and Monographs, vol. 135. American Mathematical Society, Providence (2007) · Zbl 1157.53034
[12] Fang, F., Li, X.-D., Zhang, Z.: Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59(2), 563-573 (2009) · Zbl 1166.53023 · doi:10.5802/aif.2440
[13] Guan, D.Z.-D.: Quasi-Einstein metrics. Int. J. Math. 6(3), 371-379 (1995) · Zbl 0847.53032 · doi:10.1142/S0129167X95000110
[14] He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. Anal. Geom. 20(2), 271-312 (2012) · Zbl 1270.53075 · doi:10.4310/CAG.2012.v20.n2.a3
[15] Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3(4), 301-307 (1993) · Zbl 0788.53034
[16] Kanai, M.: On a differential equation characterizing a Riemannian structure of a manifold. Tokyo J. Math. 6(1), 143-151 (1983) · Zbl 0534.53037 · doi:10.3836/tjm/1270214332
[17] Kim, D.-S., Kim, Y.H.: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Am. Math. Soc. 131(8), 2573-2576 (2003) · Zbl 1029.53027 · doi:10.1090/S0002-9939-03-06878-3
[18] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library. Wiley, New York (1996). Reprint of the 1963 original
[19] Kotschwar, B.: On rotationally invariant shrinking Ricci solitons. Pac. J. Math. 236(1), 73-88 (2008) · Zbl 1152.53056 · doi:10.2140/pjm.2008.236.73
[20] Kotschwar, B.: Backwards uniqueness for the Ricci flow. Int. Math. Res. Not. 21, 4064-4097 (2010) · Zbl 1211.53086
[21] Kühnel, W., Conformal transformations between Einstein spaces, Bonn, 1985, Braunschweig · Zbl 0667.53039 · doi:10.1007/978-3-322-90616-8_5
[22] Kühnel, W., Rademacher, H.-B.: Einstein spaces with a conformal group. Results Math. 56(1-4), 421-444 (2009) · Zbl 1187.53046
[23] Lichnerowicz, A.: Géométrie des Groupes de Transformations. Travaux et Recherches Mathématiques, III. Dunod, Paris (1958) · Zbl 0096.16001
[24] Maschler, G.: Special Kähler-Ricci potentials and Ricci solitons. Ann. Glob. Anal. Geom. 34(4), 367-380 (2008) · Zbl 1158.53054 · doi:10.1007/s10455-008-9114-z
[25] Nagano, T.: The conformal transformation on a space with parallel Ricci tensor. J. Math. Soc. Jpn. 11, 10-14 (1959) · Zbl 0089.17201 · doi:10.2969/jmsj/01110010
[26] Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14, 333-340 (1962) · Zbl 0115.39302 · doi:10.2969/jmsj/01430333
[27] Osgood, B., Stowe, D.: The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke Math. J. 67(1), 57-99 (1992) · Zbl 0766.53034 · doi:10.1215/S0012-7094-92-06704-4
[28] Petersen, P.: Riemannian Geometry, 2nd edn. Graduate Texts in Mathematics, vol. 171. Springer, New York (2006) · Zbl 1220.53002
[29] Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10(4), 757-799 (2011) · Zbl 1239.53057
[30] Qian, Z.: Estimates for weighted volumes and applications. Q. J. Math. Oxford Ser. (2) 48(190), 235-242 (1997) · Zbl 0902.53032 · doi:10.1093/qjmath/48.190.235
[31] Tashiro, Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251-275 (1965) · Zbl 0136.17701 · doi:10.1090/S0002-9947-1965-0174022-6
[32] Yano, K., Nagano, T.: Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. (2) 69, 451-461 (1959) · Zbl 0088.14204 · doi:10.2307/1970193
[33] Yokota, T.: Perelman’s reduced volume and a gap theorem for the Ricci flow. Commun. Anal. Geom. 17(2), 227-263 (2009) · Zbl 1179.53067 · doi:10.4310/CAG.2009.v17.n2.a3
[34] Zhang, S.J.: On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below. Acta Math. Sin. Engl. Ser. 27(5), 871-882 (2011) · Zbl 1219.53039
[35] Zhang, Z.-H.: Gradient shrinking solitons with vanishing Weyl tensor. Pac. J. Math. 242(1), 189-200 (2009) · Zbl 1171.53332 · doi:10.2140/pjm.2009.242.189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.