×

A Gauss/anti-Gauss quadrature method of moments applied to population balance equations with turbulence-induced nonlinear phase-space diffusion. (English) Zbl 07561059

Summary: Many particulate systems occurring in nature and technology are adequately described by a number density function (NDF). The numerical solution of the corresponding population balance equation (PBE) is typically accompanied by high computational costs. Quadrature-based moment methods are an approach to reduce the computational complexity by solving only for a set of moments associated with the NDF employing Gaussian quadrature rules to close the moment equations derived from the PBE. The evolution of a population of inertial particles dispersed in a turbulent fluid is governed by a PBE with a phase-space diffusion term as a result of random microscale fluctuations. Considerations on the microscopic behavior concerning the momentum exchange between fluid and dispersed particles suggest that this diffusion term is nonlinear and nonsmooth. The resulting integral terms in the derived moment equations entail large approximation errors when using Gaussian quadrature rules for closure. In this work, we propose a modification of the quadrature method of moments (QMOM), namely the Gauss/anti-Gauss-QMOM (GaG-QMOM), making use of anti-Gaussian quadrature formulae to reduce the large errors due to this particular form of diffusion. This new method is investigated in a series of simple one-dimensional test cases with analytical reference solutions. Moreover, we propose a realizability-preserving variation of the strong-stability preserving Runge-Kutta (RKSSP) schemes that is suited to problems involving phase-space diffusion. Besides the observation that the modified second-order RKSSP scheme can serve as a realizability-preserving alternative to the standard RKSSP scheme of the same order, the numerical results reveal that, compared to the standard QMOM, the GaG-QMOM can reduce the large errors by one to two orders of magnitude.

MSC:

76Txx Multiphase and multicomponent flows
00Axx General and miscellaneous specific topics
33-XX Special functions

References:

[1] Ramkrishna, D., Population Balances: Theory and Applications to Particulate Systems in Engineering (2000), Academic Press
[2] Marchisio, D. L.; Fox, R. O., Computational Models for Polydisperse Particulate and Multiphase Systems (2013), Cambridge University Press
[3] Frenklach, M., Method of moments with interpolative closure, Chem. Eng. Sci., 57, 12, 2229-2239 (2002)
[4] McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 27, 2, 255-265 (1997)
[5] Marchisio, D. L.; Fox, R. O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 1, 43-73 (2005)
[6] Yuan, C.; Laurent, F.; Fox, R., An extended quadrature method of moments for population balance equations, J. Aerosol Sci., 51, 1-23 (2012)
[7] Yuan, C.; Fox, R., Conditional quadrature method of moments for kinetic equations, J. Comput. Phys., 230, 22, 8216-8246 (2011) · Zbl 1231.82007
[8] Liao, Y.; Lucas, D., A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci., 64, 15, 3389-3406 (2009)
[9] Liao, Y.; Lucas, D., A literature review on mechanisms and models for the coalescence process of fluid particles, Chem. Eng. Sci., 65, 10, 2851-2864 (2010) · Zbl 1218.34011
[10] Li, D.; Gao, Z.; Buffo, A.; Podgorska, W.; Marchisio, D. L., Droplet breakage and coalescence in liquid-liquid dispersions: comparison of different kernels with EQMOM and QMOM, AIChE J., 63, 6, 2293-2311 (2017)
[11] Fox, R. O., On multiphase turbulence models for collisional fluid-particle flows, J. Fluid Mech., 742, 368-424 (2014) · Zbl 1328.76072
[12] Pozorski, J.; Minier, J.-P., Probability density function modeling of dispersed two-phase turbulent flows, Phys. Rev. E, 59, 1, 855-863 (1999)
[13] Minier, J.-P.; Peirano, E., The pdf approach to turbulent polydispersed two-phase flows, Phys. Rep., 352, 1-3, 1-214 (2001) · Zbl 0971.76039
[14] Peirano, E.; Chibbaro, S.; Pozorski, J.; Minier, J. P., Mean-field/pdf numerical approach for polydispersed turbulent two-phase flows, Prog. Energy Combust. Sci., 32, 3, 315-371 (2006)
[15] Minier, J.-P., A methodology to devise consistent probability density function models for particle dynamics in turbulent dispersed two-phase flows, Phys. Fluids, 33, 2, Article 023312 pp. (2021)
[16] Laurie, D., Anti-Gaussian quadrature formulas, Math. Comput., 65, 214, 739-747 (1996) · Zbl 0843.41020
[17] Fox, R. O., Introduction and fundamentals of modeling approaches for polydisperse multiphase flows, (Marchisio, D. L.; Fox, R. O., Multiphase Reacting Flows: Modelling and Simulation (2007), Springer), 1-40
[18] Marchisio, D. L., Quadrature method of moments for poly-disperse flows, (Marchisio, D. L.; Fox, R. O., Multiphase Reacting Flows: Modelling and Simulation (2007), Springer), 41-77 · Zbl 1298.76214
[19] Vikas, V.; Wang, Z. J.; Passalacqua, A.; Fox, R. O., Realizable high-order finite-volume schemes for quadrature-based moment methods, J. Comput. Phys., 230, 13, 5328-5352 (2011) · Zbl 1419.76465
[20] Vikas, V.; Wang, Z. J.; Fox, R. O., Realizable high-order finite-volume schemes for quadrature-based moment methods applied to diffusion population balance equations, J. Comput. Phys., 249, 162-179 (2013) · Zbl 1302.65205
[21] Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation (2004), Oxford University Press · Zbl 1130.42300
[22] Wilf, H., Mathematics for the Physical Sciences (1962), John Wiley and Sons · Zbl 0105.26803
[23] Gordon, R. G., Error bounds in equilibrium statistical mechanics, J. Math. Phys., 9, 5, 655-663 (1968) · Zbl 0182.30002
[24] Wheeler, J. C., Modified moments and gaussian quadratures, Rocky Mt. J. Math., 4, 2, 287-296 (1974) · Zbl 0309.65009
[25] Sack, R.; Donovan, A., An algorithm for gaussian quadrature given modified moments, Numer. Math., 18, 5, 465-478 (1971) · Zbl 0221.65041
[26] Dette, H.; Studden, W. J., The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis (1997), John Wiley & Sons · Zbl 0886.62002
[27] Pigou, M.; Morchain, J.; Fede, P.; Penet, M.-I.; Laronze, G., New developments of the extended quadrature method of moments to solve population balance equations, J. Comput. Phys., 365, 243-268 (2018) · Zbl 1396.65079
[28] Chihara, T., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach · Zbl 0389.33008
[29] Shohat, J.; Tamarkin, J., The Problem of Moments (1943), American Mathematical Soc. · Zbl 0063.06973
[30] Wright, D. L., Numerical advection of moments of the particle size distribution in eulerian models, J. Aerosol Sci., 38, 3, 352-369 (2007)
[31] Kah, D.; Laurent, F.; Massot, M.; Jay, S., A high order moment method simulating evaporation and advection of a polydisperse liquid spray, J. Comput. Phys., 231, 2, 394-422 (2012) · Zbl 1426.76383
[32] Gosman, A. D.; Ioannides, E., Aspects of computer simulation of liquid-fueled combustors, J. Energy, 7, 6, 482-490 (1983)
[33] Gorokhovski, M.; Zamansky, R., Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale, Phys. Rev. Fluids, 3, 3, Article 034602 pp. (2018)
[34] Bini, M.; Jones, W. P., Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency, Phys. Fluids, 19, 3, Article 035104 pp. (2007) · Zbl 1146.76327
[35] Bini, M.; Jones, W. P., Large-eddy simulation of particle-laden turbulent flows, J. Fluid Mech., 614, 207-252 (2008) · Zbl 1158.76021
[36] van Kampen, N. G., Itô versus Stratonovich, J. Stat. Phys., 24, 1, 175-187 (1981) · Zbl 0509.60057
[37] Gardiner, C., Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (1985), Springer · Zbl 1143.60001
[38] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications (1989), Springer · Zbl 0665.60084
[39] Otten, D. L.; Vedula, P., A quadrature based method of moments for nonlinear Fokker-Planck equations, J. Stat. Mech. Theory Exp., 2011, 09 (Sep 2011)
[40] Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A., Application of the Fokker-Planck molecular mixing model to turbulent scalar mixing using moment methods, Phys. Fluids, 29, 6, Article 065109 pp. (2017)
[41] Pollack, M.; Ferraro, F.; Janicka, J.; Hasse, C., Evaluation of quadrature-based moment methods in turbulent premixed combustion, Proc. Combust. Inst., 38, 2, 2877-2884 (2021)
[42] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), U.S. Government Printing Office) · Zbl 0543.33001
[43] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[44] Nguyen, T.; Laurent, F.; Fox, R.; Massot, M., Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes, J. Comput. Phys., 325, 129-156 (2016) · Zbl 1375.76204
[45] Massot, M.; Laurent, F.; Kah, D.; de Chaisemartin, S., A robust moment method for evaluation of the disappearance rate of evaporating sprays, SIAM J. Appl. Math., 70, 3203-3234 (2010) · Zbl 1214.35051
[46] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations. 1, Nonstiff Problems (1993), Springer · Zbl 0789.65048
[47] Forbes, C.; Evans, M.; Hastings, N.; Peacock, B., Statistical Distributions (2011), John Wiley & Sons · Zbl 1258.62012
[48] Dunkl, C. F.; Xu, Y., Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and Its Applications (2014), Cambridge University Press · Zbl 1317.33001
[49] Fox, R. O.; Laurent, F.; Vié, A., Conditional hyperbolic quadrature method of moments for kinetic equations, J. Comput. Phys., 365, 269-293 (2018) · Zbl 1395.82232
[50] Patel, R. G.; Desjardins, O.; Fox, R. O., Three-dimensional conditional hyperbolic quadrature method of moments, J. Comput. Phys.: X, 1, Article 100006 pp. (2019) · Zbl 07783818
[51] John, V.; Thein, F., On the efficiency and robustness of the core routine of the quadrature method of moments (QMOM), Chem. Eng. Sci., 75, 327-333 (2012)
[52] Dhillon, I. S., A New O(N^2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem (1997), University of California: University of California Berkeley
[53] Bronshtein, I. N.; Semendyayev, K. A.; Musiol, G.; Mühlig, H., Handbook of Mathematics (2007), Springer · Zbl 1204.00008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.