×

Simulations of non homogeneous viscous flows with incompressibility constraints. (English) Zbl 1540.76114

Summary: This presentation is an overview on the development of numerical methods for the simulation of non homogeneous flows with incompressibility constraints. We are particularly interested in systems of partial differential equations describing certain mixture flows, like the Kazhikhov-Smagulov system which can be used to model powder-snow avalanches. It turns out that the Incompressible Navier-Stokes system with variable density is a relevant step towards the treatment of such models, and it allows us to bring out some interesting numerical difficulties. We should handle equations of different types, roughly speaking transport and diffusion equations. We present two strategies based on time-splitting. The former relies on a hybrid approach, coupling finite volume and finite element methods. The latter extends discrete duality finite volume schemes for such non homogeneous flows. The methods are confronted to exact solutions and to the simulation of Rayleigh-Taylor instabilities.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76Nxx Compressible fluids and gas dynamics

References:

[1] Alazard, T., Low Mach number flows and combustion, SIAM J. Math. Anal., 38, 1186-1213 (2006) · Zbl 1121.35092
[2] Alazard, T., A minicourse on the low Mach number limit, Discrete Contin. Dyn. Syst. Ser. S, 3, 365-404 (2008) · Zbl 1160.35060
[3] Antontsev, S. N.; Kazhikhov, A. V.; Monakhov, V. N., (Boundary Value Problems Mechanics of Nonhomogeneous Fluids. Boundary Value Problems Mechanics of Nonhomogeneous Fluids, Studies in Math. and its Appl., vol. 22 (1990), North Holland) · Zbl 0696.76001
[4] Beirao da Veiga, H., Diffusion on viscous fluids. Existence and asymptotic properties of solutions, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., 10, 341-355 (1983) · Zbl 0531.76095
[5] Bell, J. B.; Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101, 2, 334-348 (1992) · Zbl 0759.76045
[6] Bernard, M.; Dellacherie, S.; Faccanoni, G.; Grec, B.; Nguyen, T.-T.; Lafitte, O.; Penel, Y., Study of a low Mach nuclear core model for single-phase flows, ESAIM Proc., 38, 118-134 (2012) · Zbl 1329.76248
[7] Berthelin, F.; Goudon, T.; Minjeaud, S., Multifluid flows: a kinetic approach, J. Sci. Comput., 66, 2, 792-824 (2016) · Zbl 06555598
[8] Boyer, F.; Fabrie, P., (Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Math. Sci., vol. 183 (2013), Springer) · Zbl 1286.76005
[10] Brenner, H., Navier-Stokes revisited, Physica A, 349, 1-2, 60-132 (2005)
[11] Bresch, D.; Essoufi, E. H.; Sy, M., Effect of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9, 3, 377-397 (2007) · Zbl 1220.35114
[12] Calgaro, C.; Chane-Kane, E.; Creusé, E.; Goudon, T., \(L^\infty\) stability of vertex-based MUSCL finite volume schemes on unstructured grids; simulation of incompressible flows with high density ratios, J. Comput. Phys., 229, 17, 6027-6046 (2010) · Zbl 1425.76157
[13] Calgaro, C.; Chehab, J.-P.; Saad, Y., Incremental incomplete LU factorizations with applications to time-dependent PDEs, Numer. Linear Algebra Appl., 17, 5, 811-837 (2010) · Zbl 1240.65091
[14] Calgaro, C.; Creusé, E.; Goudon, T., An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Phys., 227, 9, 4671-4696 (2008), completed with an OpenSource code and a series of benchmarks available at the URL http://math.univ-lille1.fr/ simpaf/SITE-NS2DDV/home.html · Zbl 1137.76037
[15] Calgaro, C.; Creusé, E.; Goudon, T., Modeling and simulation of mixture flows: Application to powder-snow avalanches, Comput. & Fluids, 107, 100-122 (2015) · Zbl 1390.76403
[16] Clain, S.; Clauzon, V., \(L^\infty\) stability of the MUSCL methods, Numer. Math., 116, 1, 31-64 (2010) · Zbl 1228.65180
[17] Clarelli, F.; Di Russo, C.; Natalini, R.; Ribot, M., A fluid dynamics model of the growth of phototrophic biofilms, J. Math. Biol., 66, 7, 1387-1408 (2013) · Zbl 1264.92048
[18] Clauzon, V., Analyse des schémas d’ordre élevé pour les écoulements compressibles. application à la simulation numérique d’une torche à plasma (2008), Université Blaise-Pascal Clermont-Ferrand II: Université Blaise-Pascal Clermont-Ferrand II France, (Ph.D. thesis)
[19] Clément-Rastello, M., Etude de la dynamique des avalanches de neige en aérosol (2002), Université Joseph Fourier: Université Joseph Fourier Grenoble, (Ph.D. thesis)
[20] Danchin, R., Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differential Equations, 9, 3-4, 353-386 (2004) · Zbl 1103.35085
[21] Danchin, R.; Liao, X., On the well-posedness of the full low-Mach number limit system in general critical Besov spaces, Commun. Contemp. Math., 14, 3, 47 (2012), Article 1250022 · Zbl 1320.35276
[22] Delcourte, S.; Domelevo, K.; Omnes, P., A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal., 45, 3, 1142-1174 (2007) · Zbl 1152.65110
[23] Dellacherie, S., Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. Comput. Phys., 229, 4, 978-1016 (2010) · Zbl 1329.76228
[24] Dellacherie, S., On a low Mach nuclear core model, ESAIM Proc., 35, 79-106 (2012) · Zbl 1357.76074
[25] Domelevo, K.; Omnes, P., A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M2AN Math. Model. Numer. Anal., 39, 6, 1203-1249 (2005) · Zbl 1086.65108
[26] Dutykh, D.; Acary-Robert, C.; Bresch, D., Mathematical modeling of powder-snow avalanche flows, Stud. Appl. Math., 127, 1, 38-66 (2011) · Zbl 1419.76656
[27] Etienne, J., Simulation numérique directe de nuages aérosols denses sur des pentes; application aux avalanches de neige poudreuse (2004), Institut National Polytechnique de Grenoble, (Ph.D. thesis)
[28] Etienne, J.; Saramito, P.; Hopfinger, E., Numerical simulations of dense clouds on steep slopes: Application to powder-snow avalanches, Ann. Glaciol., 38, 5, 379-383 (2004), presented at IGS International Symposium on Snow and Avalanches. Davos, Switzerland 2-6 June 2003
[29] Feireisl, E.; Vasseur, A., New perspectives in fluid dynamics: Mathematical analysis of a model proposed by Howard Brenner, (Fursikov, A. V.; Galdi, G. P.; Pukhnachev, V. V., New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume. New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume, Advances in Mathematical Fluid Mechanics (2010), Springer), 153-179 · Zbl 1221.35276
[30] Franchi, F.; Straughan, B., A comparison of Graffi and Kazhikov-Smagulov models for top heavy pollution instability, Adv. Water Resour., 24, 585-594 (2001)
[31] Franchi, F.; Straughan, B., Convection, diffusion and pollution: The model of Dario Graffi, (Proceedings of the Conference: Nuovi Progressi nella Fisica Matematica dall’Eredità di Dario Graffi, Roma. Proceedings of the Conference: Nuovi Progressi nella Fisica Matematica dall’Eredità di Dario Graffi, Roma, Atti dei Convegni Lincei, vol. 177 (2002)), 257-265
[32] Goudon, T., Intégration; Intégrale de Lebesgue et Introduction à l’Analyse Fonctionnelle, Références Sciences (2011), Ellipses · Zbl 1327.28002
[33] Goudon, T.; Krell, S., DDFV scheme for incompressible Navier-Stokes equations with variable density, (Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Springer Proc. in Math. & Stat., vol. 77 (2014), Springer), 627-636
[34] Goudon, T.; Vasseur, A., On a model for mixture flows: Derivation, dissipation and stability properties, Arch. Ration. Mech. Anal., 220, 1, 1-35 (2016) · Zbl 1339.35319
[35] Graffi, D., Il teorema di unicitá per i fluidi incompressibili, perfetti, eterogenei, Rev. Un. Mat. Argentina, 17, 73-77 (1955) · Zbl 0074.20206
[36] Guermond, J.-L.; Popov, B., Viscous regularization of the Euler equations and entropy principles, SIAM J. Appl. Math., 74, 2, 284-305 (2014) · Zbl 1446.76147
[37] Guermond, J.-L.; Quartapelle, L., A projection FEM for variable density incompressible flows, J. Comput. Phys., 165, 167-188 (2000) · Zbl 0994.76051
[38] Guermond, J.-L.; Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228, 8, 2834-2846 (2009) · Zbl 1159.76028
[39] Guillard, H.; Viozat, C., On the behavior of upwind schemes in the low Mach number limit, Comput. & Fluids, 28, 63-86 (1999) · Zbl 0963.76062
[40] Haack, J.; Jin, S.; Liu, J.-G., An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations, Commun. Comput. Phys. (CiCP), 12, 955-980 (2012) · Zbl 1373.76284
[41] Herbin, R.; Kheriji, W.; Latché, J.-C., Staggered schemes for all speed flows, ESAIM Proc., 35, 122-150 (2012) · Zbl 1357.76038
[42] Hermeline, F., A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys., 160, 2, 481-499 (2000) · Zbl 0949.65101
[43] Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg., 192, 16-18, 1939-1959 (2003) · Zbl 1037.65118
[44] Johnston, H.; Liu, J.-G., Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys., 199, 1, 221-259 (2004) · Zbl 1127.76343
[45] Joseph, D. D.; Renardy, Y. Y., (Fundamentals of Two-Fluid Dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids. Fundamentals of Two-Fluid Dynamics. Part II: Lubricated Transport, Drops and Miscible Liquids, Interdisciplinary Applied Mathematics, vol. 3 (1993), Springer-Verlag: Springer-Verlag New York) · Zbl 0784.76002
[46] Kazhikhov, A. V.; Smagulov, S., The correctness of boundary value problems in a diffusion model in an inhomogeneous fluid, Sov. Phys. Dokl., 22, 249-250 (1977) · Zbl 0427.76078
[47] Krell, S., Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2d meshes, Numer. Methods Partial Differential Equations, 27, 6, 1666-1706 (2011) · Zbl 1426.76389
[48] Krell, S., Stabilized DDFV schemes for the incompressible Navier-Stokes equations, (Fort, J.; Furst, J.; Halama, J.; Herbin, R.; Hubert, F., Finite Volumes for Complex Applications VI Problems and Perspectives. Finite Volumes for Complex Applications VI Problems and Perspectives, Springer Proceedings in Mathematics, vol. 4 (2011), Springer: Springer Berlin, Heidelberg), 605-612 · Zbl 1246.76101
[49] Krell, S., Finite volume method for general multifluid flows governed by the interface Stokes problem, Math. Models Methods Appl. Sci., 22, 5, 1150025-1-1150025-35 (2012) · Zbl 1452.76056
[50] Krell, S.; Manzini, G., The discrete duality finite volume method for the Stokes equation on 3D polyhedral meshes, SIAM J. Numer. Anal., 50, 2, 808-837 (2012) · Zbl 1387.65113
[51] Liao, X., Quelques résultats mathématiques sur les gaz à faible nombre de Mach (2013), Université Paris-Est, (Ph.D. thesis)
[52] Liao, X., A global existence result for a zero Mach number system, J. Math. Fluid Mech., 16, 1, 77-103 (2014) · Zbl 1308.35169
[53] Lions, P. L., Mathematical Topics in Fluid Mechanics; Volume 1: Incompressible Models (1996), Clarendon Press: Clarendon Press Oxford · Zbl 0866.76002
[54] Mills, A. F., Comment on: “Navier-Stokes revisited” [Phys. A 349 (2005), no. 1-2, 60-132; mr2120925] by H. Brenner, Physica A, 371, 2, 256-259 (2006)
[55] Naaim-Bouvet, F., Approche Macro-Structurelles des écoulements bi-Phasiques Turbulents de Neige et de Leur Interaction Avec des Obstacles, Habilitation à Diriger les Recherches (2003), Université Joseph Fourier: Université Joseph Fourier Grenoble
[56] Naaim-Bouvet, F.; Naaim, M.; Bacher, M.; Heiligenstein, L., Physical modelling of the interaction between powder avalanches and defence structures, Nat. Hazards Earth Syst. Sci., 2, 193-202 (2002)
[57] Naaim-Bouvet, F.; Pain, S.; Naaim, M.; Faug, T., Numerical and physical modelling of the effect of a dam on powder avalanche motion: Comparison with previous approaches, Surv. Geophys., 24, 479-498 (2003)
[58] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solution in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 153-177 (1974) · Zbl 0284.73048
[59] Penel, Y.; Dellacherie, S.; Lafitte, O., Theoretical study of an abstract bubble vibration model, J. Anal. Appl., 32, 1, 19-36 (2013) · Zbl 1262.35176
[60] Prosperetti, A.; Tryggvason, G., Computational Methods for Multiphase Flows (2007), Cambridge Univ. Press · Zbl 1166.76003
[61] Pyo, J.; Shen, J., Gauge-Uzawa methods for incompressible flows with variable density, J. Comput. Phys., 221, 1, 181-197 (2007) · Zbl 1109.76037
[62] Schneider, T.; Botta, N.; Geratz, K. J.; Klein, R., Extension of finite volume compressible flow solvers to multidimensional, variable density zero Mach number flows, J. Comput. Phys., 155, 248-286 (1999) · Zbl 0968.76054
[63] Secchi, P., On the initial value problem for the equations of motion of viscous incompressible fluids in the presence of diffusion, Boll. Unione Mat. Ital. B (6), 1, 3, 1117-1130 (1982) · Zbl 0499.76077
[64] Tryggvason, G., Numerical simulations of the Rayleigh-Taylor instability, J. Comput. Phys., 75, 253-282 (1988) · Zbl 0638.76056
[65] Zaza, C., Contribution à la résolution numérique d’écoulements à tout nombre de Mach et au couplage fluide-poreux en vue de la simulation d’écoulements diphasiques homogénéisés dans les composants nucléaires (2015), Aix-Marseille Université, (Ph.D. thesis)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.