×

Effect of topology changes on the breakup of a periodic liquid jet. (English) Zbl 1521.76111

Summary: The breakup of a periodic jet is examined computationally, using a front-tracking/finite-volume method, where the interface is represented by connected marker points moving with the fluid, while the governing equations are solved on a fixed grid. Tracking the interface allows control of whether topology changes take place or not. The Reynolds and Capillary numbers are kept relatively low \(( R e = 150\) and \(C a = 2)\) so most of the flow is well resolved. The effect of topology changes is examined by following the jet until it has mostly disintegrated, for different “coalescence criterion,” based on the thickness of thin films and threads. The evolution of both two-dimensional and fully three-dimensional flows is examined. It is found that although there is a significant difference between the evolution when no breakup takes place and when it does, once breakup takes place the evolution is relatively insensitive to exactly how it is triggered for a range of coalescence criterion, and any differences are mostly confined to the smallest scales.

MSC:

76D25 Wakes and jets
76D05 Navier-Stokes equations for incompressible viscous fluids
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Arienti, M.; Li, X.; Soteriou, M.; Eckett, C.; Sussman, M.; Jensen, R., Coupled level- set/volume-of-fluid method for simulation of injector atomization, J Propul Power, 29, 1, 147-157 (2013)
[2] G. M. Bianchi, F. Minelli, R. Scardovelli, S. Zaleski, 3D large scale simulation of the high-speed liquid jet atomization, SAE Tech. Pap, xx:2007-01-0244(2007).
[3] G.M. Bianchi, P. Pelloni, S. Toninel, R. Scardovelli, A. Leboissetier, S. Zaleski, Improving the knowledge of high-speed liquid jets atomization by using quasi-direct 3D simulation, SAE Tech. Pap, xx:200524089. (2005).
[4] Bois, G., Direct numerical simulation of a turbulent bubbly flow in a vertical channel: towards an improved second-order Reynolds stress model, Nucl Eng Des, 321, 92-103 (2017)
[5] V. Boniou, T. Schmitt, A. Vié, Comparison of interface capturing methods for the simulation of two-phase flow in a unified low-Mach framework, Hal-03241460 (2021).
[6] Chesnel, J.; Reveillon, J.; Demoulin, F.-X.; Ménard, T., Subgrid analysis of liquid jet atomization, 41-67 (2011), Begell House Inc.
[7] du Cluzeau, A.; Bois, G.; Toutant, A., Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations, J Fluid Mech, 866, 132-168 (2019) · Zbl 1415.76630
[8] Desjardins, O.; Moureau, V.; Knudsen, E.; Herrmann, M.; Pitsch, H., Conservative level set/ghost fluid method for simulating primary atomization, Proc. Annu. conf. inst. liq. atom. spray syst. am., 20th. ILASS am., Pap. 34. (2007), Inst. Liq. Atom. Spray Syst.: Inst. Liq. Atom. Spray Syst. Toronto
[9] Dijkhuizen, W.; Roghair, I.; Annaland, M. V.S.; Kuipers, J., DNS of gas bubbles behaviour using an improved 3D front tracking model-drag force on isolated bubbles and comparison with experiments, Chem Eng Sci, 65, 1415-1426 (2010)
[10] Dijkhuizen, W.; Roghair, I.; Annaland, M. V.S.; Kuipers, J., DNS of gas bubbles behaviour using an improved 3D front tracking model-model development, Chem Eng Sci, 65, 1427-1437 (2010)
[11] Gorokhovski, M.; Herrmann, M., Modeling primary atomization, Annu Rev Fluid Mech, 40, 343-366 (2008) · Zbl 1232.76058
[12] Hao, Y.; Prosperetti, A., A numerical method for three-dimensional gas-liquid flow computations, J Comput Phys, 196, 126-144 (2004) · Zbl 1109.76383
[13] Hasslberger, J.; Ketter, S.; Klein, M.; Nilanjan, C., Flow topologies in primary atomization of liquid jets: a direct numerical simulation analysis, J Fluid Mech, 859, 819-838 (2019) · Zbl 1415.76635
[14] Hermann, M.; Gorokhovski, M., An outline of a LES subgrid model for liquid/gas phase interface dynamics, Proceedings of the 2008 CTR summer program, center for turbulence research, 171-181 (2008)
[15] Hermann, M.; Gorokhovski, M., A large eddy simulation subgrid model for turbulent phase interface dynamics, 11th triennial international annual conference on liquid atomization and spray systems (2009)
[16] (10 pages)
[17] Herrmann, M., A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure, J Comput Phys, 229, 3, 745-759 (2010) · Zbl 1253.76126
[18] Herrmann, M., The influence of density ratio on the primary atomization of a turbulent liquid jet in crossflow, Proc Combust Inst, 33, 2079-2088 (2011)
[19] Herrmann, M., On simulating primary atomization using the refined level set grid method, At Sprays, 283-301, 21 (2011)
[20] Hua, J.; Lou, J., Numerical simulation of bubble rising in viscous liquid, J Comput Phys, 222, 769-795 (2007) · Zbl 1158.76404
[21] Jemison, M.; Sussman, M.; Shashkov, M., Filament capturing with the multimaterial moment-of-fluid method, J Comput Phys, 285, 149-172 (2015) · Zbl 1352.65324
[22] Kim, D.; Desjardins, O.; Herrmann, M.; Moin, P., The primary breakup of a round liquid jet by a coaxial flow of gas, Proc. annu. conf. inst. liq. atom. spray syst. am., 20th. ILASS am., Pap. 8 (2007), Inst. Liq. Atom. Spray Syst.: Inst. Liq. Atom. Spray Syst. Toronto
[23] Klein, M.; Sadiki, A.; Janicka, J., A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations, J Comput Phys, 186, 652-665 (2003) · Zbl 1047.76522
[24] Lebas, R.; Ménard, T.; Beau, P.; Berlemont, A.; Demoulin, F., Numerical simulation of primary break-up and atomization: DNS and modelling study, Int J Multiph Flow, 35, 247-260 (2009)
[25] Lefebvre, A., Atomization and sprays (1989), Taylor and Francis
[26] Ling, Y.; Fuster, D.; Tryggvason, G.; Zaleski, S., A two-phase mixing layer between parallel gas and liquid streams: multiphase turbulence statistics and influence of interfacial instability, J Fluid Mech, 859, 268-307 (2019) · Zbl 1415.76648
[27] Ling, Y.; Fuster, D.; Zaleski, S.; Tryggvason, G., Spray formation in a quasi-planar gas-liquid mixing layer at moderate density ratios: a numerical closeup, Phys Rev Fluids, 2, 014005 (2017)
[28] Lu, J.; Tryggvason, G., Dynamics of nearly spherical bubbles in a turbulent channel upflow, J Fluid Mech, 732, 166-189 (2013) · Zbl 1294.76252
[29] (20 pages)
[30] Lu, J.; Tryggvason, G., Multifluid flows in a vertical channel undergoing topology changes-effect of void fraction, Phys Rev Fluids, 4, 084301 (2019)
[31] Ma, M.; Lu, J.; Tryggvason, G., Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system, Phys Fluids, 27, 092101 (2015)
[32] Ménard, T.; Beau, P.-A.; Tanguy, S.; Demoulin, F.-X.; Berlemont, A., Primary break-up: DNS of liquid jet to improve atomization modelling, Comput Meth Multiph Flow III, xx, 343-352 (2005)
[33] Ménard, T.; Tanguy, S.; Berlemont, A., Coupling level set/VOF/ghost fluid methods: validation and application to 3d simulation of the primary break-up of a liquid jet, Int J Multiph Flow, 33, 510-524 (2007)
[34] Muradoglu, M.; Kayaalp, A. D., An auxiliary grid method for computations of multiphase flows in complex geometries, J Comput Phys, 214, 858-877 (2006) · Zbl 1136.76410
[35] Néel, B.; Villermaux, E., The spontaneous puncture of thick liquid films, J Fluid Mech, 838, 192-221 (2018) · Zbl 1419.76056
[36] Pa, M.; Pitsch, H.; Desjardins, O., Detailed numerical simulations of primary atomization of liquid jets in crossflow., 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (2009)
[37] Pan, Y.; Suga, K., A numerical study on the breakup process of laminar liquid jets into a gas, Phys Fluids, 18, 052101 (2006)
[38] Razizadeh, M.; Mortazavi, S.; Shahin, H., Drop breakup and drop pair coalescence using front-tracking method in three dimensions, Acta Mech, 229, 1021-1043 (2018)
[39] Sander, W.; Weigand, B., Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate Reynolds numbers, Phys Fluids, 20, 053301 (2008) · Zbl 1182.76656
[40] Schillaci, E.; Antepara, O.; Balcazar, N.; Serrano, J. R.; Oliva, A., A numerical study of liquid atomization regimes by means of conservative level-set simulations, Comput Fluids, 179, 137-149 (2019) · Zbl 1411.76093
[41] Shang, X.; Luo, Z.; Bai, B., Numerical simulation of dynamic behavior of compound droplets on solid surface in shear flow by front-tracing method, Chem Eng Sci, 193, 325-335 (2019)
[42] Shinjo, J.; Umemura, A., Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation, Int J Multiph Flow, 36, 513-532 (2010)
[43] Shinjo, J.; Umemura, A., Detailed simulation of primary atomization mechanisms in diesel jet sprays (isolated identification of liquid jet tip effects), Proc Combust Inst, 33, 2089-2097 (2011)
[44] Shinjo, J.; Umemura, A., Surface instability and primary atomization characteristics of straight liquid jet sprays, Int J Multiph Flow, 37, 1294-1304 (2011)
[45] Shinjo, J.; Umemura, A., Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray, Proc Combust Inst, 34, 1553-1560 (2013)
[46] Shinjo, J.; Xia, J.; Umemura, A., Droplet/ligament modulation of local small-scale turbulence and scalar mixing in a dense fuel spray, Proc Combust Inst, 35, 1595-1602 (2015)
[47] van Sint Annaland, M.; Dijkhuizen, W.; Deen, N.; Kuipers, J., Numerical simulation of gas bubbles behaviour using a 3D front tracking method, AlChE J, 52, 99-110 (2006)
[48] Tauber, W.; Tryggvason, G., Direct numerical simulations of primary breakup, Comput Fluid Dyn J, 9, 1, . (2000)
[49] Tauber, W.; Unverdi, S.; Tryggvason, G., The nonlinear behavior of a sheared immiscible fluid interface, Phys Fluids, 14, 2871-2885 (2002) · Zbl 1185.76364
[50] Tomar, G.; Fuster, D.; Zaleski, S.; Popinet, S., Multiscale simulations of primary atomization, Comput Fluids, 39, 1864-1874 (2010) · Zbl 1245.76148
[51] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawhai, N.; Tauber, W., A front tracking method for the computations of multiphase flow, J Comput Phys, 169, 708-759 (2001) · Zbl 1047.76574
[52] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct numerical simulations of gas-liquid multiphase flows (2011), Cambridge University Press · Zbl 1226.76001
[53] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J Comput Phys, 100, 25-37 (1992) · Zbl 0758.76047
[54] Valluri, P.; Naraigh, L. O.; Ding, H.; Spelt, P., Linear and nonlinear spatiotemporal instability in laminar two-layer flows, J Fluid Mech, 656, 458-480 (2010) · Zbl 1197.76055
[55] Wu, P.; Miranda, R.; Faeth, G., Effect of initial flow conditions on primary break-up of nonturbulent and turbulent liquid jets, At Sprays, 5, 175-196 (1995)
[56] Yamamoto, Y.; Higashida, S.; Tanaka, H.; Wakimoto, T.; Ito, T.; Katoh, K., Numerical analysis of contact line dynamics passing over a single wettable defect on a wall, Phys Fluids, 28, 082109 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.